Calc II Problem sheet

Thursday, July 8

1. Write down a couple of complete sentences using the comparison test to show that

$$
\sum_{n=1}^{\infty} \frac{\sin \left(n^{3}\right)}{n^{4}}
$$

converges absolutely.
2. Write down a couple complete sentences using the alternating series test to show that

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\ln (n)}{n}
$$

converges conditionally.
3. Suppose we'd like to approximate

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1}
$$

by truncating the sum to obtain a finite sum of the form

$$
\sum_{n=1}^{N}(-1)^{n+1} \frac{n}{n^{2}+1}
$$

How large does N have to be to ensure that our approximation is within 0.0001 of the actual value?

