
Trig Tricks

Mark McClure (based on section 6.3 of Apex Calculus)

Trig functions and functions built from trigonometric functions are of tremen-
dous importance as they are used to describe periodic behavior. This docu-
ment describes several techniques for finding antiderivatives of certain com-
binations of trigonometric functions. In addition to the basic facts that∫

sin(x) dx = − cos(x) and

∫
cos(x) = sin(x),

we’ll see plenty of trig identities and u-substitution.

Trig integrals and u-substitution

Often, u-substitution can help solve an integral involving sines and cosines.
Perhaps the simplest example is

Example: Evaluate ∫
sin(x) cos(x) dx.

Solution: Let u = sin(x). Then du = cos(x) dx. Thus∫
sin(x) cos(x) dx =

∫
u du =

1

2
u2 + C =

1

2
sin2(x) + C.2

How easy was that?!

Integrals of the form
∫
sinm x cosn x dx

Now, we’ll generalize that last example and consider integrals of the form∫
sinm x cosn x dx,
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where m,n are nonnegative integers. Our strategy for evaluating these inte-
grals is to use the fundamental Pythagorean identity

cos2 x + sin2 x = 1

to convert high powers of one trigonometric function into the other, leaving
a single sine or cosine term in the integrand. We summarize the general
technique as follows:

Technique for integrals involving powers of sine and cosine

Consider
∫

sinm x cosn x dx, where m,n are nonnegative integers.

1. If m is odd, then m = 2k + 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sinx = (sin2 x)k sinx = (1 − cos2 x)k sinx.

Then∫
sinm x cosn x dx =

∫
(1 − cos2 x)k sinx cosn x dx = −

∫
(1 − u2)kun du,

where u = cosx and du = − sinx dx.

2. If n is odd, then using substitutions similar to that outlined above we
have ∫

sinm x cosn x dx =

∫
um(1 − u2)k du,

where u = sinx and du = cosx dx.

3. If both m and n are even, use the power–reducing identities

cos2 x =
1 + cos(2x)

2
and sin2 x =

1 − cos(2x)

2

to reduce the degree of the integrand. Expand the result and apply the
principles the same principles again.

Example Evaluate ∫
sin5 x cos8 x dx.

Solution: The power of the sine term is odd, so we rewrite sin5 x as

sin5 x = sin4 x sinx = (sin2 x)2 sinx = (1 − cos2 x)2 sinx.
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Our integral is now
∫

(1 − cos2 x)2 cos8 x sinx dx. Let u = cos x, hence du =
− sinx dx. Making the substitution and expanding the integrand gives∫

(1 − cos2)2 cos8 x sinx dx = −
∫

(1 − u2)2u8 du

= −
∫ (

1 − 2u2 + u4
)
u8 du

= −
∫ (

u8 − 2u10 + u12
)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2

11
u11 − 1

13
u13 + C

= −1

9
cos9 x +

2

11
cos11 x− 1

13
cos13 x + C.2

Example: Evaluate ∫
sin5 x cos9 x dx.

Solution: The powers of both the sine and cosine terms are odd, therefore we
can apply our technique to either power. We choose to work with the power
of the cosine term since the previous example used the sine term’s power.

We rewrite cos9 x as

cos9 x = cos8 x cosx

= (cos2 x)4 cosx

= (1 − sin2 x)4 cosx

= (1 − 4 sin2 x + 6 sin4 x− 4 sin6 x + sin8 x) cosx.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫
sin5 x

(
1−4 sin2 x+6 sin4 x−4 sin6 x+sin8 x

)
cosx dx.

Now substitute and integrate, using u = sinx and du = cosx dx.∫
sin5 x

(
1 − 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cosx dx =
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∫
u5(1 − 4u2 + 6u4 − 4u6 + u8) du =

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1

6
u6 − 1

2
u8 +

3

5
u10 − 1

3
u12 +

1

14
u14 + C

=
1

6
sin6 x− 1

2
sin8 x+

3

5
sin10 x+ . . .

− 1

3
sin12 x+

1

14
sin14 x+ C.2

Definite integrals of trig powers

It is often the case that definite integrals involving trig functions are quite easy
to compute, if we can use the symmetry involved. The reason that the definite
integral of any function of the form cos(mx) or sin(nx) is zero, if we integrate over
a full period. In symbols,∫ a+π/m

a
cos(mx) dx = 0 and

∫ a+π/n

a
sin(nx) dx = 0.

This is illustrated for the sine in figure 1.

Figure 1: The integral over a period of the sine function is zero

The same is true if we raise the sine to an odd power, since that preserves the
symmetry, though it does distort the graph. This is illustrated in figure 2.

Figure 2: The integral over a period of sin3(x) is zero
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Of course, the same is true for the cosine, since it’s just a shifted copy of the
sine. I wonder what happens if we raise one of these graphs to an *even* power?

Here’s an example where computing the definite integral is much quicker than
computing the indefinite integral:
Example: Evaluate ∫ π

0
cos4 x sin2 x dx.

Solution: The powers of sine and cosine are both even, so we employ the power–

reducing formulas and algebra as follows.∫ π

0
cos4 x sin2 x dx =

∫ π

0

(
1 + cos(2x)

2

)2(1 − cos(2x)

2

)
dx

=

∫ π

0

1 + 2 cos(2x) + cos2(2x)

4
· 1 − cos(2x)

2
dx

=
1

8

∫ π

0

(
1 + cos(2x) − cos2(2x) − cos3(2x)

)
dx

=
1

8

∫ π

0

(
1 − cos2(2x)

)
dx

=
1

8

∫ π

0

(
1 − 1

2
(1 + cos(2x))

)
dx

=
1

8

∫ π

0

(
1 − 1

2

)
dx =

π

16
.

Note that we’ve used the facts that∫ π

0
cos(2x) dx = 0 and

∫ π

0
cos3(2x) dx = 0

to drop to integrals.2
If this seems like a lot, you might examine the
computation of the indefinite integral in Apex Calculus. Be sure to hit the

”Solution” button to see the nastiness!

Trigonometric Polynomials and their products

Linear combinations of the functions cos(mx) and sin(nx) that we saw in the last
section are called trigonometric polynomials. They are of tremendous importance
in applications involving Fourier series including the study of heat transfer and
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wave propagation. Integrals involving their products arise often in that context -
i.e. integrals of the form∫

sin(mx) sin(nx) dx,

∫
cos(mx) cos(nx) dx and

∫
sin(mx) cos(nx) dx.

These are best approached by first applying the Product to Sum Formulae, namely

sin(mx) sin(nx) =
1

2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1

2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1

2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
Example: Evaluate

∫
sin(5x) cos(2x) dx.

Solution: The application of the formula and subsequent integration are straight-
forward: ∫

sin(5x) cos(2x) dx =

∫
1

2

[
sin(3x) + sin(7x)

]
dx

= −1

6
cos(3x) − 1

14
cos(7x) + C.2

Exercises

Evaluate the following integrals:

1.

∫
sin3 x cosx dx

2.

∫ 2π

0
sin3 x cos2 x dx

3.

∫
sin3 x cos3 x dx

4.

∫
sin(5x) cos(3x) dx

5.

∫ π

0
sin(3x) sin(7x) dx
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