
Elementary Numerical Methods
and computing with Python

Steven Pav1 Mark McClure2

April 14, 2016

1Portions Copyright c© 2004-2006 Steven E. Pav. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

2Copyright c© 2016 Mark McClure. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled ”GNU Free Documentation License”.



2



Contents

Preface 7

1 Introduction 9

1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Some mathematical preliminaries 15

2.1 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Geometric series . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 The integral test . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Alternating Series . . . . . . . . . . . . . . . . . . . . . . 20
2.1.4 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 21

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Computer arithmetic 27

3.1 Strange arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Computer numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Types of numbers . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Floating point numbers . . . . . . . . . . . . . . . . . . . 30
3.3.3 Distribution of computer numbers . . . . . . . . . . . . . 31
3.3.4 Exploring numbers with Python . . . . . . . . . . . . . . 32

3.4 Loss of Significance . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Finding Roots 37

4.1 Bisection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.1 Modifications . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Functional iteration . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Connection with functional iteration . . . . . . . . . . . . 43

3



4 CONTENTS

4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.5 Using Newton’s Method . . . . . . . . . . . . . . . . . . . 47

4.4 Secant Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 52

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Interpolation 55

5.1 Polynomial Interpolation . . . . . . . . . . . . . . . . . . . . . . . 55
5.1.1 Lagranges Method . . . . . . . . . . . . . . . . . . . . . . 55
5.1.2 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.3 Newton’s Nested Form . . . . . . . . . . . . . . . . . . . . 59
5.1.4 Divided Differences . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Errors in Polynomial Interpolation . . . . . . . . . . . . . . . . . 61
5.2.1 Interpolation Error Theorem . . . . . . . . . . . . . . . . 64
5.2.2 Interpolation Error for Equally Spaced Nodes . . . . . . . 66

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Spline Interpolation 71

6.1 First and Second Degree Splines . . . . . . . . . . . . . . . . . . 71
6.1.1 First Degree Spline Accuracy . . . . . . . . . . . . . . . . 72
6.1.2 Second Degree Splines . . . . . . . . . . . . . . . . . . . . 73
6.1.3 Computing Second Degree Splines . . . . . . . . . . . . . 74

6.2 (Natural) Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Why Natural Cubic Splines? . . . . . . . . . . . . . . . . 75
6.2.2 Computing Cubic Splines . . . . . . . . . . . . . . . . . . 76

6.3 B Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Solving Linear Systems 83

7.1 Gaussian Elimination with Näıve Pivoting . . . . . . . . . . . . . 83
7.1.1 Elementary Row Operations . . . . . . . . . . . . . . . . . 83
7.1.2 Algorithm Terminology . . . . . . . . . . . . . . . . . . . 86
7.1.3 Algorithm Problems . . . . . . . . . . . . . . . . . . . . . 87

7.2 Pivoting Strategies for Gaussian Elimination . . . . . . . . . . . 88
7.2.1 Scaled Partial Pivoting . . . . . . . . . . . . . . . . . . . 89
7.2.2 An Example . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2.3 Another Example and A Real Algorithm . . . . . . . . . . 90

7.3 LU Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.3.2 Using LU Factorizations . . . . . . . . . . . . . . . . . . . 95
7.3.3 Some Theory . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.4 Computing Inverses . . . . . . . . . . . . . . . . . . . . . 97

7.4 Iterative Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS 5

7.4.1 An Operation Count for Gaussian Elimination . . . . . . 97
7.4.2 Dividing by Multiplying . . . . . . . . . . . . . . . . . . . 98
7.4.3 Impossible Iteration . . . . . . . . . . . . . . . . . . . . . 100
7.4.4 Richardson Iteration . . . . . . . . . . . . . . . . . . . . . 100
7.4.5 Jacobi Iteration . . . . . . . . . . . . . . . . . . . . . . . . 101
7.4.6 Gauss Seidel Iteration . . . . . . . . . . . . . . . . . . . . 102
7.4.7 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4.8 A Free Lunch? . . . . . . . . . . . . . . . . . . . . . . . . 105

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 Least Squares 111

8.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1.1 The Definition of Ordinary Least Squares . . . . . . . . . 111
8.1.2 Linear Least Squares . . . . . . . . . . . . . . . . . . . . . 112
8.1.3 Least Squares from Basis Functions . . . . . . . . . . . . 114

8.2 Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2.1 Alternatives to Normal Equations . . . . . . . . . . . . . 119

8.3 Orthogonal Least Squares . . . . . . . . . . . . . . . . . . . . . . 120
8.3.1 Computing the Orthogonal Least Squares Approximant . 125
8.3.2 Principal Component Analysis . . . . . . . . . . . . . . . 126

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9 Approximating Derivatives 131

9.1 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.1.1 Approximating the Second Derivative . . . . . . . . . . . 133

9.2 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . . . 134
9.2.1 Abstracting Richardson’s Method . . . . . . . . . . . . . . 134
9.2.2 Using Richardson Extrapolation . . . . . . . . . . . . . . 135

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10 Integrals and Quadrature 141

10.1 The Definite Integral . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.1.1 Upper and Lower Sums . . . . . . . . . . . . . . . . . . . 141
10.1.2 Approximating the Integral . . . . . . . . . . . . . . . . . 143
10.1.3 Simple and Composite Rules . . . . . . . . . . . . . . . . 144

10.2 Trapezoidal Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
10.2.1 How Good is the Composite Trapezoidal Rule? . . . . . . 146
10.2.2 Using the Error Bound . . . . . . . . . . . . . . . . . . . . 147

10.3 Romberg Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.3.1 Recursive Trapezoidal Rule . . . . . . . . . . . . . . . . . 151

10.4 Gaussian Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . 152
10.4.1 Determining Weights (Lagrange Polynomial Method) . . . 152
10.4.2 Determining Weights (Method of Undetermined Coeffi-

cients) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.4.3 Gaussian Nodes . . . . . . . . . . . . . . . . . . . . . . . . 155
10.4.4 Determining Gaussian Nodes . . . . . . . . . . . . . . . . 156



6 CONTENTS

10.4.5 Reinventing the Wheel . . . . . . . . . . . . . . . . . . . . 158
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11 Ordinary Differential Equations 163

11.1 Elementary Methods . . . . . . . . . . . . . . . . . . . . . . . . . 163
11.1.1 Integration and ‘Stepping’ . . . . . . . . . . . . . . . . . . 164
11.1.2 Taylor’s Series Methods . . . . . . . . . . . . . . . . . . . 164
11.1.3 Euler’s Method . . . . . . . . . . . . . . . . . . . . . . . . 165
11.1.4 Higher Order Methods . . . . . . . . . . . . . . . . . . . . 165
11.1.5 A basic error estimate . . . . . . . . . . . . . . . . . . . . 166
11.1.6 Error theorems . . . . . . . . . . . . . . . . . . . . . . . . 167
11.1.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.1.8 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.1.9 Backwards Euler’s Method . . . . . . . . . . . . . . . . . 172

11.2 Runge-Kutta Methods . . . . . . . . . . . . . . . . . . . . . . . . 174
11.2.1 Taylor’s Series Redux . . . . . . . . . . . . . . . . . . . . 175
11.2.2 Deriving the Runge-Kutta Methods . . . . . . . . . . . . 175
11.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11.3 Systems of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.3.1 Larger Systems . . . . . . . . . . . . . . . . . . . . . . . . 178
11.3.2 Recasting Single ODE Methods . . . . . . . . . . . . . . . 179
11.3.3 It’s Only Systems . . . . . . . . . . . . . . . . . . . . . . . 180
11.3.4 It’s Only Autonomous Systems . . . . . . . . . . . . . . . 181

Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A GNU Free Documentation License 187

1. APPLICABILITY AND DEFINITIONS . . . . . . . . . . . . . . . 187
2. VERBATIM COPYING . . . . . . . . . . . . . . . . . . . . . . . . 189
3. COPYING IN QUANTITY . . . . . . . . . . . . . . . . . . . . . . 189
4. MODIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
5. COMBINING DOCUMENTS . . . . . . . . . . . . . . . . . . . . . 192
6. COLLECTIONS OF DOCUMENTS . . . . . . . . . . . . . . . . . 192
7. AGGREGATION WITH INDEPENDENT WORKS . . . . . . . . 192
8. TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
9. TERMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10. FUTURE REVISIONS OF THIS LICENSE . . . . . . . . . . . . 193
ADDENDUM: How to use this License for your documents . . . . . . 194



Preface

This preliminary version 0.2.1 of an open numerical methods text has been as-
sembled by Mark McClure for use in UNCA’s Math/CS 441 course in Numerical
Analysis. It draws largely on Stephen Pav’s Numerical Methods Course Notes.
Most of chapters 4 through 8 of this version, as well as parts of chapters 2 and 3,
are drawn directly from that work. The little that remains is my own, though,
I hope to expand it as I teach the subject.

History

0.1 2005 (Pav’s complete original)

0.2 January 11, 2016 - First new draft
Chapters 1, 2, and 3 are largely new, though section 2.1.4 on “Taylor
series” and section 3.4 on “Loss of significance” are mostly Pav’s work.

0.2.1 January 16, 2016
Incremental changes to sections

• 2.1.1 Geometric Series

• 2.1.2 The integral test

• 2.1.3 Alternating series

0.2.2 January 31, 2016
Addition of sections

• 3.3.3 Distribution of computer numbers

• 4.2 Functional iteration

Modifications to section 4.1 The bisection method, including Python code.
Addition of several exercises to chapters 3 and 4.
Fixed many typos and some hyperlinks

License

As Pav’s work is licensed under GNU FDL V2, so is this. A full copy of the
license may be found at the end of the text.

7

http://www.marksmath.org/
http://www.unca.edu/
https://github.com/shabbychef
https://github.com/shabbychef
http://www.gnu.org/licenses/fdl-1.2.en.html


8 CONTENTS



Chapter 1

Introduction

The (over?)emphasis of the traditional calculus curriculum on algebraic manipu-
lation often leaves the impression that most interesting problems in mathematics
can be solved in closed form. Yet, this is far from true! In fact, most problems
in applied mathematics can only be solved approximately and there are very
many quite elementary problems that can only be solved approximately as well.

1.1 Examples

Let’s illustrate the idea of the opening paragraph with a few simple examples:

• xp − x− 1 = 0 for various, postive integers p.

• cos(x) = 0

• cos(x) = x

These are all examples of equations and a solution is simply some value of
x that makes the equation true. Note that techniques for solving equations of
all types is of tremendous importance in applied mathematics since, typically,
equations arise in the process of mathematical modelling and their solutions
have interpretation in the context of the applied problem. In this text, we focus
on the mathematical portion of the problem from a numerical perspective.

Example 1.1. Solve the quadratic x2 − x− 1 = 0.

This is a very simple problem that will be useful in demonstrating the dif-
ference between a closed form or exact solution form versus an approximate
solution. It’s very easy to solve this equation using the quadratic formula.
There is one positive solution, namely

x =
1±
√
5

2
.

9



10 CHAPTER 1. INTRODUCTION

This is is the exact or closed form solution. It’s not too hard to get a sense of
this number. The square root of 5 is a bit bigger than 2 so we expect x to be a
bit bigger than 3

2 = 1.5. More precisely, we find

x ≈ 1.61803.

The distinction between these two types of solutions is very important for us.
It is this second type of solution that we are mainly interested in here.

Example 1.2. Solve the cubic x3 − x− 1 = 0.

This is quite a bit harder but it can solved in closed form using a technique
called Cardano’s method. There is one positive root which is exactly

x =
1

3

3

√

27

2
− 3
√
69

2
+

3

√

1
2

(

9 +
√
69
)

32/3
.

Well, this number is much harder to get a handle on. Do you get a sense of
how big it is just by looking? It probably makes sense to look at a graph, which
clearly shows a root between 1 and 1.5. Using the techniques we learn in this
text, we’ll be able to show that the solution is more precisely x ≈ 1.32472.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−2

−1

0

1

2

3

4

5

Figure 1.1: The graph of f(x) = x3 − x− 1

The reader is invited to use a computer algebra system to find the exact
forms of the solutions of x4 − x − 1 = 0 and x5 − x − 1 = 0. Te solution
to the first is so complicated that it is virtually useless. The second cannot



1.2. ITERATION 11

be expressed in closed form; this is the content of Abel’s famous impossibility
theorem.

Example 1.3. Solve the trigonometric equation cos(x) = 0.

Now we’re back on easy street! The solutions are exactly the odd multiples
of π/2:

xn =
2n+ 1

2
π.

Again, this is expressed in closed form. If we are interested in a decimal ap-
proximation to the first positive root, we have:

x ≈ 1.5708.

Example 1.4. Solve the trigonometric equation cos(x) = x.

Well, this seems quite a bit harder! In fact, it can be proved that there is
no closed form solution. It’s very easy to see a solution between 0.5 and 1 by
looking at a graph, however. Again, using the techniques in this text, we’ll be
able to find the more precise approximations x ≈ 0.739085.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

Figure 1.2: The graph of the cosine together with y = x

1.2 Iteration

Example 1.4 can be solved using a technique called functional iteration, a topic
we will explore further in chapter 4. The idea is simple: Given a function f , start



12 CHAPTER 1. INTRODUCTION

with an initial seed, namely any real number x0. Let x1 = f(x0), x2 = f(x1),
and generally xn = f(xn−1). This generates a sequence which, if convergent,
should converge to a fixed point of f .

This idea is very easy to implement with Python:

from numpy import cos , abs

x1 = 1
x2 = cos (1 )
cnt = 0
while abs ( x1−x2 ) > 10∗∗(−8) and cnt < 100 :

x1 = x2
x2 = cos ( x2 )
cnt = cnt + 1

(x2 , cnt )
# Out : (0.73908513664657183 , 45)

The point is that cos(x2) must be very close to x2 by this point.

cos ( x2 )
# Out : 0.73908513090372074

Thus, we’ve approximately found a fixed point.
In addition to illustrating some nice mathematics, this example illustrates

the fact that we’ll be playing with Python in this text. There is a companion
Crash course in Python for beginning numerical analysts in which you can learn
how to use Matplotlib to create graphs like figure 1.3.

1.3 Topics

In numerical analysis, we tackle the classic problems of applied mathematics
from a numerical perspective. These include

• Solving equations, or finding roots of functions

• Fitting functions to data exactly or approximately or otherwise modelling
real data with numerical procedures

• Differentiating functions based on data

• Computing definite integrals.

Potential further topics include

• Optimizing functions by finding extrema

• Solving ordinary differential equations given initial conditions

• Doing all the above in higher dimensions

• Solving problems in linear algebra given (potentially) very large matrices.



1.3. TOPICS 13

0.5 1.0

0.5

1.0

Figure 1.3: Cobweb plot for f(x) = cos(x)

To do any of this effectively, we must consider computer issues such as

• Representation of numbers on the computer

• Computational error

• Implementations of our algorithms.



14 CHAPTER 1. INTRODUCTION



Chapter 2

Some mathematical
preliminaries

2.1 Series

Series of numbers and functions are typically encountered in a second semester
calculus class are central to much of what we do in numerical analysis. A general
series has the form

∞
∑

n=m

an.

Each an is a number and the sum of the series is defined to be

lim
N→∞

N
∑

n=m

an.

The starting point m is often 0 or 1, but may be any integer.
There are two central questions associated with any numerical series.

• Does the series converge?

• If so, what is the sum?

Often, we can answer the first question, which is not too hard, but not the
second. Approximation of the sum of a convergent series, whose sum we do not
know exactly, is a basic question in numerical computing, in fact.

2.1.1 Geometric series

A geometric series has the basic form

∞
∑

n=0

rn.

15



16 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES

In calculus, we learn that the N th partial sum of this series can be written

N
∑

n=0

rn =
1− rN+1

1− r → 1

1− r ,

as N →∞. This yields the formula

∞
∑

n=0

rn =
1

1− r ,

provided that |r| < 1. A simple factorization yields the somewhat more general
formula

∞
∑

n=m

arn = arm
∞
∑

n=0

arn =
rm

1− r .

Among other things, this can be used to resolve Zeno’s famous paradox:

∞
∑

n=1

(

1

2

)n

=
1/2

1− 1/2
= 1. (2.1)

Decimal and binary expansions

In numerical analysis we are very interested in representations of real numbers.
One of the most fundamental such representations is that of a decimal expansion.
It should be clear that a decimal expansion is really just a sum. When we write
π ≈ 3.14159, we mean that

π ≈ 3 +
1

10
+

4

102
+

1

103
+

5

104
+

9

105
.

When the digits form an eventually repeating pattern, the sum can be computed
exactly using the geometric series formula. For example, we can prove the very
fun fact that 0.9 = 1 via the computation

0.9 =

∞
∑

n=1

9

10n
=

9(1/10)

1− 1/10
=

9/10

9/10
= 1.

As a slightly tricker example, note that

1.23345 = 1 +
2

10
+

3

102
+

1

100

∞
∑

n=1

345

1000n
=

20537

16650
.

Computers are digital and most floating point processors work in base 2.
Thus, it’s worth thinking about binary expansions. Such an expansion has the
form

(dn)(dn−1)(dn−2) · · · (d1)(d0)2̇(d−1)(d−2) · · · =
n
∑

k=−∞

dk
2k
.



2.1. SERIES 17

where each digit dk is either zero or one. For example

1012̇011 = 22 + 1 +
1

22
+

1

23
=

43

8
.

Repeating binary expansions can be computed using the geometric series for-
mula, just as repeating decimal expansions can. The analog to the decimal fact
that 0.9 = 1 is 02̇1 = 1. The sum we must evaluate to show this is exactly
Zeno’s sum from equation 2.1.

We now consider the question of representing nice decimal numbers in binary.
The fact is that terminating decimal numbers are not necessarily terminating
in binary. This leads to some confusing behavior, as we’ll see in chapter 3 on
computer arithmetic.

The simplest such example is the decimal 0.1, which is an exact represen-
tation of the rational number 1/10. The binary expansion, however, is non-
terminating:

02̇00011001 =
1

24

(

1 +

∞
∑

n=1

9

24k

)

.

The geometric series formula easily shows that this sums to 1/10. The 4 in the
exponent of 24k arises since we’ve got a repeating block of length 4 and the 9
arises because 1001 is its binary expansion. I chose to start the repeating block
after a 1 because, as we’ll see in chapter 3, that’s standard for (normalized)
floating point numbers.

Base 16, or hexadecimal, can be useful as well, mainly because it provides a
convenient shorthand for binary. These expansions have the form

(dn)(dn−1)(dn−2) · · · (d1)(d0)1̇6(d−1)(d−2) · · · =
n
∑

k=−∞

dk
2k
.

where each digit dk is an integer between 0 and 15. Often, the digits 10 through
15 are abbreviated by the characters a through f . Note that each hexadecimal
digit has a binary representation using four digits.

binary 0000 0001 · · · 1100 1101 1110 1111
hexadecimal 0 1 · · · c d e f
decimal 0 1 · · · 12 13 14 15

This makes it easy to go back and forth by simply make these replacements.

2.1.2 The integral test

The integral test is typically stated in a Calculus test as just a test for conver-
gence.

Theorem 2.1 (Integral test for convergence). Suppose that f is a positive,
real-valued, continuous, decreasing function on [1,∞) and let an = f(n) for



18 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES

each natural number n. Then

∞
∑

n=1

an converges iff

∫ ∞

1

f(x) dx converges.

From the viewpoint of numerical analysis, this can be made much more
precise.

Theorem 2.2 (Integral test). Suppose again that f is a positive, real-valued,
continuous, decreasing function on [1,∞) and let an = f(n) for each natural
number n. Suppose also that

∫ ∞

1

f(x) dx

converges. Then,

∫ ∞

N

f(x)dx ≤
∞
∑

n=N

an ≤ f(N) +

∫ ∞

N

f(x)dx.

N

N N+1 N+2 N+3 ⋯ N N+1 N+2 N+3 ⋯

Figure 2.1: Comparing an integral to a sum



2.1. SERIES 19

Proof. The integral test follows from a simple geometric interpretation of the
quantities involved. Assuming the sum is convergent, the series

∞
∑

n=N

an

can be interpreted as the combined areas of the rectangles shown in the bottom
left of figure 2.1. The integral

∫ ∞

N

f(x) dx

can be interpreted as the area under the curve y = f(x) and over the interval
[N,∞), as shown in the top of figure 2.1. As the rectangles lie wholly above the
curve, we have the first inequality, namely

∫ ∞

N

f(x) dx ≤
∞
∑

n=N

an.

Next, comparing the integral to the sum

∞
∑

n=N+1

an

as shown in the bottom right of figure 2.1, we see that

∞
∑

n=N+1

an ≤
∫ ∞

N

f(x) dx.

Since aN = f(N), we can add aN to the left and f(N) to the right to obtain

∞
∑

n=N

an ≤ f(N) +

∫ ∞

N

f(x)dx,

as desired.

The integral test provides a tool to solve an important canonical problem
in numerical analysis. Suppose we’d like to approximate some value, say x0.
We have a sequence xn, which we know converges to x0. Thus, one reasonable
approximation is xN for some large value of N . But now, suppose we are
given some particular error tolerance, say ε, and we wish to ensure that our
approximation is within ε of the actual result. In symbols, we want

|xN − x0| < ε.

How large does N have to be? We don’t wantN to be ridiculously large, because
we want to be efficient, but we definitely want it to be large enough.



20 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES

In our particular problem, the value we’d like to approximate x0 is an infinite
sum. The easy approximation is a partial sum. In symbols,

∞
∑

n=0

an ≈
N
∑

n=0

an.

How large does N have to be to ensure that our approximation is as close as
we’d like? Well,

∞
∑

n=0

an −
N−1
∑

n=0

an =

∞
∑

n=N

an.

Thus, the integral test theorem 2.2 gives us upper and lower bounds on exactly
this quantity.

Example 2.3. Estimate
∞
∑

n=1

1

n3

so that your result is within 0.0001 of the actual value.

Solution: We first compute
∫ ∞

N

1

x3
dx =

1

2N2
.

For N > 2 we have
1

N3
+

1

2N2
≤ 1

N2
.

Thus, if we choose N to be an integer such that 1/N2 < 0.0001, then our error
will be even smaller. Any N larger than 100 will certainly work. Thus, we have

∞
∑

n=1

1

n3
≈

100
∑

n=1

1

n3
≈ 1.202007

Note that this sum can be easily computed in Python:

sum( [ 1 / n∗∗3 for n in range ( 1 , 1 0 1 ) ] )
# Out : 1.2020074006596781

2.1.3 Alternating Series

Another theorem for proving convergence, with an error estimate, is the alter-
nating series test:

Theorem 2.4 (Alternating Series Test). If a0 ≥ a1 ≥ a2 ≥ a3 ≥ . . . ≥ 0, and
limk→∞ ak = 0 then the series

∞
∑

k=0

(−1)k ak = a0 − a1 + a2 − · · ·



2.1. SERIES 21

converges. Moreover, if you let S be the value of the sum, and Sn be the partial
sum

∑n
k=0 (−1)

k
ak, then

|Sn − S| ≤ an+1.

This theorem can help us figure out how many terms to take in an approxi-
mation.

Example 2.5. Use the alternating series test to determine how many terms are
needed to obtain a good approximation (say, within 1

2 × 10−9) to the alternating
harmonic series:

∞
∑

n=1

−1n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · .

Solution: The alternating series test tells us that

|Sn − n| ≤ an+1 =
1

n+ 1
.

Thus it suffices to take 1
n+1 ≤ 1

2 ×10−9. That is, we need to take 2 billion terms
in our approximation; this is very slow convergence!

2.1.4 Taylor’s Theorem

Recall from calculus the Taylor’s series for a function, f(x), expanded about
some number, c, is written as

f(x) ∼ a0 + a1 (x− c) + a2 (x− c)2 + . . . .

Here the symbol ∼ is used to denote a “formal series,” meaning that convergence
is not guaranteed in general. The constants ai are related to the function f and
its derivatives evaluated at c. When c = 0, this is a MacLaurin series.

For example we have the following Taylor’s series (with c = 0):

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

sin (x) = x− x3

3!
+
x5

5!
− . . .

cos (x) = 1− x2

2!
+
x4

4!
− . . .

(2.2)

(2.3)

(2.4)

Theorem 2.6 (Taylor’s Theorem). If f(x) has derivatives of order 0, 1, 2, . . . , n+
1 on the closed interval [a, b], then for any x and c in this interval

f(x) =
n
∑

k=0

f (k) (c) (x− c)k
k!

+
f (n+1) (ξ) (x− c)n+1

(n+ 1)!
,

where ξ is some number between x and c, and fk(x) is the kth derivative of f
at x.



22 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES

We will use this theorem again and again in this class. The main usage is to
approximate a function by the first few terms of its Taylor’s series expansion;
the theorem then tells us the approximation is “as good” as the final term, also
known as the error term. That is, we can make the following manipulation:

f(x) =

n
∑

k=0

f (k) (c) (x− c)k
k!

+
f (n+1) (ξ) (x− c)n+1

(n+ 1)!

f(x)−
n
∑

k=0

f (k) (c) (x− c)k
k!

=
f (n+1) (ξ) (x− c)n+1

(n+ 1)!
∣

∣

∣

∣

∣

f(x)−
n
∑

k=0

f (k) (c) (x− c)k
k!

∣

∣

∣

∣

∣

=

∣

∣f (n+1) (ξ)
∣

∣ |x− c|n+1

(n+ 1)!
.

On the left hand side is the difference between f(x) and its approximation by
Taylor’s series. We will then use our knowledge about f (n+1) (ξ) on the interval
[a, b] to find some constant M such that

∣

∣

∣

∣

∣

f(x)−
n
∑

k=0

f (k) (c) (x− c)k
k!

∣

∣

∣

∣

∣

=

∣

∣f (n+1) (ξ)
∣

∣ |x− c|n+1

(n+ 1)!
≤M |x− c|n+1 .

Example Problem 2.7. Find an approximation for f(x) = sinx, expanded
about c = 0, using n = 3. Solution: Solving for f (k) is fairly easy for this
function. We find that

f(x) = sinx = sin(0) +
cos(0)x

1!
+
− sin(0)x2

2!
+
− cos(0)x3

3!
+

sin(ξ)x4

4!

= x− x3

6
+

sin(ξ)x4

24
,

so
∣

∣

∣

∣

sinx−
(

x− x3

6

)∣

∣

∣

∣

=

∣

∣

∣

∣

sin(ξ)x4

24

∣

∣

∣

∣

≤ x4

24
,

because |sin(ξ)| ≤ 1. ⊣

Example Problem 2.8. Apply Taylor’s Theorem for the case n = 1. Solution:
Taylor’s Theorem for n = 1 states: Given a function, f(x) with a continuous
derivative on [a, b], then

f(x) = f(c) + f ′(ξ)(x − c)

for some ξ between x, c when x, c are in [a, b].
This is the Mean Value Theorem. As a one-liner, the MVT says that at some
time during a trip, your velocity is the same as your average velocity for the
trip. ⊣



2.1. SERIES 23

Example Problem 2.9. Apply Taylor’s Theorem to expand f(x) = x3−21x2+
17 around c = 1. Solution: Simple calculus gives us

f (0)(x) = x3 − 21x2 + 17,

f (1)(x) = 3x2 − 42x,

f (2)(x) = 6x− 42,

f (3)(x) = 6,

f (k)(x) = 0.

with the last holding for k > 3. Evaluating these at c = 1 gives

f(x) = −3 +−39(x− 1) +
−36 (x− 1)

2

2
+

6 (x− 1)
3

6
.

Note there is no error term, since the higher order derivatives are identically
zero. By carrying out simple algebra, you will find that the above expansion is,
in fact, the function f(x). ⊣

There is an alternative form of Taylor’s Theorem, in this case substituting
x+ h for x, and x for c in the more general version. This gives

Theorem 2.10 (Taylor’s Theorem, Alternative Form). If f(x) has derivatives
of order 0, 1, . . . , n+1 on the closed interval [a, b], then for any x in this interval
and any h such that x+ h is in this interval,

f(x+ h) =

n
∑

k=0

f (k) (x) (h)
k

k!
+
f (n+1) (ξ) (h)

n+1

(n+ 1)!
,

where ξ is some number between x and x+ h.

We generally apply this form of the theorem with h → 0. This leads to a
discussion on the matter of Orders of Convergence. The following definition will
suffice for this class

Definition 2.11. We say that a function f(h) is in the class O
(

hk
)

(pro-
nounced “big-Oh of hk”) if there is some constant C such that

|f(h)| ≤ C |h|k

for all h “sufficiently small,” i.e., smaller than some h∗ in absolute value.
For a function f ∈ O

(

hk
)

we sometimes write f = O
(

hk
)

. We sometimes

also write O
(

hk
)

, meaning some function which is a member of this class.

Roughly speaking, through use of the “Big-O” function we can write an
expression without “sweating the small stuff.” This can give us an intuitive
understanding of how an approximation works, without losing too many of the
details.



24 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES

Example 2.12. Consider the Taylor expansion of lnx:

ln (x+ h) = lnx+
(1/x) h

1
+

(

−1/x2
)

h2

2
+

(

2/ξ3
)

h3

6

Letting x = 1, we have

ln (1 + h) = h− h2

2
+

1

3ξ3
h3.

Using the fact that ξ is between 1 and 1+h, as long as h is relatively small (say
smaller than 1

2), the term 1
3ξ3 can be bounded by a constant, and thus

ln (1 + h) = h− h2

2
+O

(

h3
)

.

Thus we say that h− h2

2 is a O
(

h3
)

approximation to ln(1+h). For example

ln(1 + 0.01) ≈ 0.009950331≈ 0.00995 = 0.01− 0.012

2
.



2.1. SERIES 25

Exercises

(2.1) Find the binary and hexadecimal expansions of 123.
(2.2) Use the geometric series formula to express the following numbers as frac-

tions:

(a) 2.3498

(b) 1012̇10011

(2.3) Approximate the following series to an accuracy of 0.001 and justify the
accuracy of your approximation.

(a)
∞
∑

n=1

1

n4

(b)

∞
∑

n=1

arctan(n)

n2

(c)

∞
∑

n=0

(−1)n+1

2n+ 1

(2.4) Suppose f ∈ O
(

hk
)

. Show that f ∈ O (hm) for any m with 0 < m < k.
(Hint: Take h∗ < 1.) Note this may appear counterintuitive, unless you
remember thatO

(

hk
)

is a better approximation than O (hm) whenm < k.

(2.5) Suppose f ∈ O
(

hk
)

, and g ∈ O (hm) . Show that fg ∈ O
(

hk+m
)

.

(2.6) Suppose f ∈ O
(

hk
)

, and g ∈ O (hm) , with m < k. Show that f + g ∈
O (hm) .

(2.7) Prove that f(h) = h3 is not in O
(

h4
)

(Hint: Proof by contradiction.)
(2.8) Prove that sin(h) is in O (h).
(2.9) Find a O

(

h4
)

approximation to ln(1+h). Compare the approximate value
to the actual when h = 0.1. How does this approximation compare to the
O
(

h3
)

approximate from Example 2.12 for h = 0.1?

(2.10) Suppose that f ∈ O
(

hk
)

. Can you show that f ′ ∈ O
(

hk−1
)

?
(2.11) Calculate sin(1) to within 8 decimal places by using the Taylor’s expan-

sion.
(2.12) Calculate cos(π/2+0.001) to within 8 decimal places by using the Taylor’s

expansion.



26 CHAPTER 2. SOME MATHEMATICAL PRELIMINARIES



Chapter 3

Computer arithmetic

3.1 Strange arithmetic

Computer arithmetic is a bit strange. It’s not associative, for example:

(0 .1+0 .2)+0.3 == 0.1+(0 .2+0 .3)
# Out : False

Well, that’s discouraging! It might help to look at the difference between
the two:

( (0 . 1+0 .2 )+0 .3) − (0 . 1+(0 .2+0 .3 ))
# Out : 1.1102230246251565 e−16

This can cause serious issues and create bugs, if you don’t know how to work
with it. What do you expect the following code to produce?

x = 1
while x != 0 :

x = x − 0 .1
print ( x )

Note: I certainly didn’t execute this in a notebook. The terminal would be
better, though, here’s a safer version.

x = 1
cnt = 0
while x != 0 and cnt < 20 :

x = x − 0 .1
cnt = cnt + 1
print ( x )

# Out :
# 0.9
# 0.8

27



28 CHAPTER 3. COMPUTER ARITHMETIC

# 0.7000000000000001
# 0.6000000000000001
# 0.5000000000000001
# 0.40000000000000013
# 0.30000000000000016
# 0.20000000000000015
# 0.10000000000000014
# 1.3877787807814457 e−16
# −0.09999999999999987
# −0.19999999999999987
# −0.2999999999999999
# −0.3999999999999999
# −0.4999999999999999
# −0.5999999999999999
# −0.6999999999999998
# −0.7999999999999998
# −0.8999999999999998
# −0.9999999999999998

Now we can see that x just missed zero a little bit. As we will learn, these
behaviors are due to round off error - one type of error that is crucial to under-
stand in numerical computing.

3.2 Error

Error is a precise, technical term in numerical analysis that is not synonymous
with mistake. Typically, we are interested the approximation of some quantity,
say π, using finitely many digits, say 3.14. The error associated with this
approximation is simply the difference between the two. Generally, this must
be nonzero. An important question then is, how big is the absolute value of
the error? If you know a more precise decimal expansion of π, then it’s easy
to see that the error in this little example is less than 0.002. Much of the
theoretical portion of numerical analysis involves estimates of error that arises
in a computation.

There are two main types of error:

• Truncation error

• Roundoff error

Both arise from the fact that the computer has only a finite memory and
can store only finitely many numbers to approximate the infinitely many real
numbers. Truncation error arises, more specifically, by approximating an infinite
expansion with a finite one. If we write π ≈ 3.14, this is truncation error. More
generally, truncation error arises by approximating an infinite sum with a finite
sum. Keep in mind that 3.14 = 3+1/10+ 4/100 is an example of a sum, as are



3.3. COMPUTER NUMBERS 29

all decimal expansions. Another example is given by

ex ≈
3
∑

n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
.

Roundoff error is a little different. Our computer can only represent finitely
many numbers. If we perform some computations with those numbers, we gen-
erally don’t generate another one. Technically, we say that the set of computer
numbers is not closed under the arithmetic operations. Thus, we must represent
the result of the computation by one of the numbers we have - ideally, the closest
one. Even if the original inputs were exactly correct, a computation involving
them generally won’t be.

Suppose, for example, that the numbers at are disposal are the numbers less
than or equal to 10 in absolute value with a precision of 1/10:

−10,−9.9,−9.8, . . . , 9.8, 9.9, 10.

Now suppose we want to compute (1.4 + 5.7)/4. The exact value is 1.775, but
that’s not one of our computer numbers. Thus, we represent the result as 1.8.
That’s roundoff error. Note that if we compute (1.4 + 5.7)/2, the exact result
is 3.55; should we round to 3.5 or 3.6? There are a number of strategies for
breaking the tie but the one that is most relevant here is “round to even”.
Thus, the computed result would be 3.6.

3.3 Computer numbers

3.3.1 Types of numbers

It’s worth understanding how numbers are represented on a computer. Of
course, there are a few different types of numbers that can be represented:

• Integers - typically, represented via a dedicated type like int.

• Rational or other exact numbers - typically, represented in software.

• Floating point numbers - typically, represented via a dedicated type like
float.

• Arbitrary precision numbers - somewhat similar to floating point but rep-
resented in software to have greater allowable precision.

Numerical analysis is traditionally concerned with floating point arithmetic or,
to a lesser extent, arbitrary precision numbers. Rational and other exact num-
bers lie more in the domain of symbolic computation.



30 CHAPTER 3. COMPUTER ARITHMETIC

3.3.2 Floating point numbers

Floating point numbers are represented in terms of a base β, a precision p, and
an exponent e. If β = 10 and p = 2, then the number 0.034 can be represented
as 3.4 × 10−2. With this representation, its exponent is e = −2. With this
specification, floating point numbers are not unique, as this same number can
be represented as 34× 10−3 or 0.34× 10−1. Thus, we typically take a floating
point number to have the specific form

± (d0 + d1β
−1 + · · ·+ dp−1β

−(p−1))βe, (3.1)

where each di is an integer in [0, β) and d0 6= 0. Such a representation is said to
be a normalized floating point number. Here are a few examples where β = 10,
p = 5, and e is in the range −10 ≤ e ≤ 10.

• 123450000 = 1.2345× 108

• 0.00321 = 3.2100× 10−3

• 1.23 = 1.2300× 100

Again, in this system, we have five digits of precision. The number 123450001.2
would be truncated to yield the same number as the first example in our list
above.

In these examples, we are using base β = 10 to ease into the material due
to our familiarity with it. Computers work more naturally in binary (or base
2), however, and most are hardwired this way. Thus, in equation 3.1, we have
β = 2 and each digit di is zero or one. Thus, here are some easily representable
numbers with, again, p = 5 and −5 ≤ e ≤ 5:

• 8 = 1.0000× 23 = 10002̇0

• 1
4 = 1.0000× 2−2 = 02̇01

• 5
16 = 1.0100× 2−2 = 02̇01

• 42 = 1.0101× 25 = 1010102̇

Note: I have it on good authority that Douglas Adams used to sign his books
101010.

Now, your computer reserves a specific number of bits to represent a floating
point number. The IEEE standard for double precision floating point numbers
specifies that 64 bits be used to represent the number. Specifically, it requires

• 1 bit for the sign s.

• 11 bits for the exponent e giving a range of 211 = 2048 choices for the
exponent, which is assumed to be between −1023 and 1024.

• 53 bits for the significant or mantissa c = 1.d1d2 · · · d52. Since the leading
digit must be a 1, we only need to store 52 digits.



3.3. COMPUTER NUMBERS 31

Given those choices for s, e, and c, our number is (−1)s × c× βe.
It’s interesting to note that numbers that are easily represented in one base

are not necessarily representable with finite precision in another. In base 10, for
example, 1

10 = 0.1 is exact. However, the geometric series formula shows that

1

10
=

1

2

∞
∑

n=1

3

24n
= 02̇00011.

In particular, the finite decimal expansion 0.1 has no finite binary expansion.

3.3.3 Distribution of computer numbers

It turns out that normalized floating point numbers are not distributed uni-
formly. For simplicity, let’s explore the binary floating point numbers with
precision 3 and maximum exponent size 2. If we fix the exponent to zero, for
the moment, there are 8 of these, namely the numbers of the form

1 +
d1
2

+
d2
22

+
d3
23

where each di is zero or one. In decimal, these are

1.0, 1.125, 1.25, 1.375, 1.5, 1.625, 1.75, and 1.875

To generate the rest of the positive numbers in this system, we take these 8
numbers and multiply by 2n for n = −2,−1, 0, 1, 2. That gives us 40 positive
numbers. Of course, we also add on the negative numbers for a total of 80
representable numbers in this system. These are plotted in figure 3.1 with the
eight numbers with with exponent zero shown in red. Note that the spacing
generally increases as we move away from zero. Note, also, the hole near zero.
That’s because the smallest, postive, representable number (in this system) is
2−2. The next smallest is (1 + 1/8)× 2−2 and the difference between these is
quite a bit smaller than the smallest postive.

−5 0 5

Figure 3.1: The distribution of floating point numbers

The distribution of computer numbers has important consequences when
it comes to rounding. Suppose, for example, that we want to estimate the
harmonic number

n
∑

k=1

1

k

for n = 1000. It turns out that the order matters. We can try it with Python:



32 CHAPTER 3. COMPUTER ARITHMETIC

terms = [1/ k for k in range ( 1 , 1 0 0 1 ) ]
sum1 = sum( terms )
terms . r e v e r s e ( )
sum2 = sum( terms )
sum1−sum2
# Out : 2.6645352591003757 e−15
The estimates might appear to be close but their difference is 10 times larger
than machine epsilon. Which is better?

When we add two machine numbers a and b, the result fl(a + b) generally
looks like

fl(a+ b) = (a+ b)(1 + ε).

We might think of ε as a psuedo-random number between zero and machine
epsilon. The point is, due to the distribution of machine numbers, the potential
size of the error is proportional to the actual value of the sum.

Now, if we add three numbers together, we get

fl(fl(a+ b)+ c) = ((a+ b)(1+ ε)+ c)(1+ ε) = (a+ b+ c)+ (2a+2b+ c)ε+O(ε2).

Note that the numbers that are added first contribute twice to the error. Thus,
we have less error, if we add the smaller numbers first. The problem is com-
pounded if we add four numbers:

fl(fl(fl(a+ b) + c) + d) = (a+ b+ c+ d) + (3a+ 3b+ 2c+ d)ε+O(ε2).

3.3.4 Exploring numbers with Python

Python provides some nice tools to explore numbers and their expansions.
sys.float info stores information on how floating point numbers are stored
on your machine. Here’s how it works on my Mac.

import sys
sys . f l o a t i n f o
# Out :
# sys . f l o a t i n f o (
# max=1.7976931348623157 e+308,
# max exp=1024, max 10 exp=308,
# min=2.2250738585072014 e−308,
# min exp=−1021, min 10 exp=−307,
# dig =15, mant dig=53,
# eps i l on =2.220446049250313 e−16,
# rad ix =2, rounds=1)

As Python is built on top of C, the definitive guide to understanding these
parameters is the C standard, specifically section 5.2.4.2.2. There we find that
a number is represented as

x = (−1)sβe

p
∑

k=1

dkβ
−k.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf


3.4. LOSS OF SIGNIFICANCE 33

To get the largest possible value, for example, we take each digit to be dk = 1
and the exponent to be e = 1024. We can compute the largest number in
Python:

s = sum([2∗∗(−k ) for k in range ( 1 , 5 4 ) ] )
for i in range ( 1 0 2 4 ) :

s = 2∗ s
s
# Out : 1.7976931348623157 e+308

This agrees exactly with sys.float info.max.
Another useful tool is float.hex, which displays the hexadecimal expansion

of a number.

f loat .hex ( 0 . 1 )
# Out : 0x1 .999999999999 ap−4

This indicates that the internal representation of 0.1 is

2−4

(

1 +

12
∑

k=1

9

16k
+

11

1613

)

≈ 0.10000000000000002.

We can use this information to fully understand the discrepancy between
(0.1+0.2)+0.3 and 0.1+(0.2+0.3). Not surprisingly, the hexadecimal represen-
tation of 0.2 is 0x1.999999999999ap-4. The hexadecimal representation of 0.3
is 0x1.3333333333333p-2, which to 17 digits is 0.29999999999999999 or exactly
0.3 when rounded. The sum of these three numbers yields 0.6000000000000001,
which is slightly larger than the desired value of 0.6. By contrast, the com-
puter’s computation of 0.2+ 0.3 yields exactly 0.5, which is not surprising since
0.5 easily representable in binary. Then, 0.1 + 0.5 yields exactly the computer
representation of 0.6 after rounding.

3.4 Loss of Significance

Often, a loss of significance can be incurred if two nearly equal quantities are
subtracted from one another. Thus if I were to direct my computer to subtract
0.177241 from 0.177589, the result would be .348× 10−3, and three significant
digits have been lost. This loss is called subtractive cancellation, and can often be
avoided by rewriting the expression. This will be made clearer by the examples
below.

Errors can also occur when quantities of radically different magnitudes are
summed. For example 0.1234 + 5.6789× 10−20 might be rounded to 0.1234 by
a system that keeps only 16 significant digits. This may lead to unexpected
results.

The usual strategies for rewriting subtractive expressions are completing
the square, factoring, or using the Taylor expansions, as the following examples
illustrate.



34 CHAPTER 3. COMPUTER ARITHMETIC

Example Problem 3.1. Consider the stability of
√
x+ 1 − 1 when x is near

0. Rewrite the expression to rid it of subtractive cancellation. Solution: Suppose
that x = 1.2345678× 10−5. Then

√
x+ 1 ≈ 1.000006173. If your computer (or

calculator) can only keep 8 significant digits, this will be rounded to 1.0000062.
When 1 is subtracted, the result is 6.2 × 10−6. Thus 6 significant digits have
been lost from the original.

To fix this, we rationalize the expression

√
x+ 1− 1 =

√
x+ 1− 1

√
x+ 1 + 1√
x+ 1 + 1

=
x+ 1− 1√
x+ 1 + 1

=
x√

x+ 1 + 1
.

This expression has no subtractions, and so is not subject to subtractive can-
celling. When x = 1.2345678 × 10−5, this expression evaluates approximately
as

1.2345678× 10−5

2.0000062
≈ 6.17281995× 10−6

on a machine with 8 digits, there is no loss of precision. ⊣
Note that nearly all modern computers and calculators store intermediate

results of calculations in higher precision formats. This minimizes, but does not
eliminate, problems like those of the previous example problem.

Example Problem 3.2. Write stable code to find the roots of the equation
x2 + bx+ c = 0. Solution: The usual quadratic formula is

x± =
−b±

√
b2 − 4c

2

Supposing that b≫ c > 0, the expression in the square root might be rounded to
b2, giving two roots x+ = 0, x− = −b. The latter root is nearly correct, while the
former has no correct digits. To correct this problem, multiply the numerator
and denominator of x+ by −b−

√
b2 − 4c to get

x+ =
2c

−b−
√
b2 − 4c

Now if b≫ c > 0, this expression gives root x+ = −c/b, which is nearly correct.
This leads to the pair:

x− =
−b−

√
b2 − 4c

2
, x+ =

2c

−b−
√
b2 − 4c

Note that the two roots are nearly reciprocals, and if x− is computed, x+ can
easily be computed with little additional work. ⊣
Example Problem 3.3. Rewrite ex − cosx to be stable when x is near 0.
Solution: Look at the Taylor’s Series expansion for these functions:

ex − cosx =

[

1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ . . .

]

−
[

1− x2

2!
+
x4

4!
− x6

6!
+ . . .

]

= x+ x2 +
x3

3!
+O

(

x5
)



3.4. LOSS OF SIGNIFICANCE 35

This expression has no subtractions, and so is not subject to subtractive can-
celling. Note that we propose calculating x + x2 + x3/6 as an approximation
of ex − cosx, which we cannot calculate exactly anyway. Since we assume x is
nearly zero, the approximate should be good. If x is very close to zero, we may
only have to take the first one or two terms. If x is not so close to zero, we
may need to take all three terms, or even more terms of the expansion; if x is
far from zero we should use some other technique. ⊣



36 CHAPTER 3. COMPUTER ARITHMETIC

Exercises

(3.1) Suppose f ∈ O
(

hk
)

. Show that f ∈ O (hm) for any m with 0 < m < k.
(Hint: Take h∗ < 1.) Note this may appear counterintuitive, unless you
remember thatO

(

hk
)

is a better approximation than O (hm) whenm < k.

(3.2) Suppose f ∈ O
(

hk
)

, and g ∈ O (hm) . Show that fg ∈ O
(

hk+m
)

.

(3.3) Suppose f ∈ O
(

hk
)

, and g ∈ O (hm) , with m < k. Show that f + g ∈
O (hm) .

(3.4) Prove that f(h) = −3h5 is in O
(

h5
)

.

(3.5) Prove that f(h) = h2 + 5h17 is in O
(

h2
)

.

(3.6) Prove that f(h) = h3 is not in O
(

h4
)

(Hint: Proof by contradiction.)
(3.7) Prove that sin(h) is in O (h).
(3.8) Find a O

(

h3
)

approximation to sinh.

(3.9) Find a O
(

h4
)

approximation to ln(1+h). Compare the approximate value
to the actual when h = 0.1. How does this approximation compare to the
O
(

h3
)

approximate from Example 2.12 for h = 0.1?

(3.10) Suppose that f ∈ O
(

hk
)

. Can you show that f ′ ∈ O
(

hk−1
)

?

(3.11) Rewrite
√
x+ 1−

√
1 to get rid of subtractive cancellation when x ≈ 0.

(3.12) Rewrite
√
x+ 1−√x to get rid of subtractive cancellation when x is very

large.
(3.13) Use a Taylor’s expansion to rid the expression 1 − cosx of subtractive

cancellation for x small. Use a O
(

x5
)

approximate.
(3.14) Use a Taylor’s expansion to rid the expression 1 − cos2 x of subtractive

cancellation for x small. Use a O
(

x6
)

approximate.
(3.15) Calculate cos(π/2+0.001) to within 8 decimal places by using the Taylor’s

expansion.
(3.16) Consider the error in s1 = (5 + 10) + 15 versus s2 = 5 + (10 + 15) on a

(not so good) machine with machine epsilon ε. Show that the error in s1
is of the order 45ε while the error in s2 is of the order 55ε.



Chapter 4

Finding Roots

We turn now to the problem of solving univariate equations. Here are a couple
of examples to keep in mind:

• x5 − x− 1 = 0

• cos(x) = x

Neither of these problems have simple, closed form solutions. It’s quite easy to
see from a graph, however, that they each have a unique solution.

-1 1 1.5

−2

2

y=x5 −x−1

−0.5 0.5 1.0 1.5

cos(x) =x

Figure 4.1: Two equations with clear solutions

Both of these are easily solved with the SciPy function brentq. For the first,

from s c ipy . opt imize import brentq
def f ( x ) : return x∗∗5 − x − 1
brentq ( f , 0 , 2 )
# Out : 1.1673039782614187

Note that brentq expects a function for its first argument and two numbers
defining an interval containing a root of the function. Of course, any equation

37



38 CHAPTER 4. FINDING ROOTS

LHS = RHS can be written in the form LHS − RHS = 0. Thus, we can also
solve the second example.

import numpy as np
def f ( x ) : return np . cos ( x)−x
brentq ( f , 0 , 1 )
# Out : 0.7390851332151559

In this chapter, we’ll explore how such functions work.

4.1 Bisection

The simplest root finding method is that of bisection. The following theorem
insures the success of the method

Theorem 4.1 (Intermediate Value Theorem). If f(x) is continuous on [a, b]
then for any y such that y is between f(a) and f(b) there is a c ∈ [a, b] such
that f(c) = y.

The IVT is best illustrated graphically. Note that continuity is really a
requirement here–a single point of discontinuity could ruin your whole day, as
the following example illustrates.

Example 4.2. The function f(x) = 1
x is not continuous at 0. Thus if 0 ∈ [a, b] ,

we cannot apply the IVT. In particular, if 0 ∈ [a, b] it happens to be the case
that for every y between f(a), f(b) there is no c ∈ [a, b] such that f(c) = y.

In particular, the IVT tells us that if f(x) is continuous and we know a, b
such that f(a), f(b) have different sign, then there is some root in [a, b]. A
decent estimate of the root is c = a+b

2 . We can check whether f(c) = 0. If this
does not hold then one and only one of the two following options holds:

1. f(a), f(c) have different signs.
2. f(c), f(b) have different signs.

We now choose to recursively apply bisection to either [a, c] or [c, b], respectively,
depending on which of these two options hold.

4.1.1 Modifications

Unfortunately, it is impossible for a computer to test whether a given black
box function is continuous. Thus malicious or incompetent users could cause a
näıvely implemented bisection algorithm to fail. There are a number of easily
conceivable problems:

1. The user might give f, a, b such that f(a), f(b) have the same sign. In this
case the function f might be legitimately continuous, and might have a
root in the interval [a, b]. If, taking c = a+b

2 , f(a), f(b), f(c) all have the
same sign, the algorithm would be at an impasse. We should perform a
“sanity check” on the input to make sure f(a), f(b) have different signs.



4.1. BISECTION 39

2. The user might give f, a, b such that f is not continuous on [a, b], moreover
has no root in the interval [a, b]. For a poorly implemented algorithm, this
might lead to an infinite search on smaller and smaller intervals about
some discontinuity of f . In fact, the algorithm might descend to intervals
as small as machine precision, in which case the midpoint of the interval
will, due to rounding, be the same as one of the endpoints, resulting in an
infinite recursion.

3. The user might give f such that f has no root c that is representable
in the computer’s memory. Recall that we think of computers as storing
numbers in the form ±r × 10k; given a finite number of bits to represent
a number, only a finite number of such numbers can be represented. It
may legitimately be the case that none of them is a root to f . In this
case, the behaviour of the algorithm may be like that of the previous
case. A well implemented version of bisection should check the length
of its input interval, and give up if the length is too small, compared to
machine precision.

Another common error occurs in the testing of the signs of f(a), f(b). A slick
programmer might try to implement this test in the pseudocode:

if (f(a)f(b) > 0) then ...

Note however, that |f(a)| , |f(b)| might be very small, and that f(a)f(b) might
be too small to be representable in the computer; this calculation would be
rounded to zero, and unpredictable behaviour would ensue. A wiser choice is

if (sign(f(a)) * sign(f(b)) > 0) then ...

where the function sign (x) returns −1, 0, 1 depending on whether x is negative,
zero, or positive, respectively.

4.1.2 Convergence

We can see that each time recursive bisection (f, a, b, . . .) is called that
|b− a| is half the length of the interval in the previous call. Formally call
the first interval [a0, b0], and the first midpoint c0. Let the second interval be
[a1, b1], etc. Note that one of a1, b1 will be c0, and the other will be either a0 or
b0. We are claiming that

bn − an =
bn−1 − an−1

2

=
b0 − a0

2n

Theorem 4.3 (Bisection Method Theorem). If f(x) is a continuous function
on [a, b] such that f(a)f(b) < 0, then after n steps, the algorithm run bisection

will return c such that |c− c′| ≤ |b−a|
2n , where c′ is some root of f .

4.1.3 Implementation

Python code implementing the bisection method is shown in code listing 4.1.



40 CHAPTER 4. FINDING ROOTS

Listing 4.1: The bisection method

import numpy as np
class SignError ( Exception ) :

def s t r ( s e l f ) :
return ’ f unc t i on has same s i g n s at the endpo ints ’

class I n t e r v a lE r r o r ( Exception ) :
def s t r ( s e l f ) :

return ’ need a<b ’
def b i s e c t i o n ( f , a , b , t o l =10∗∗(−15)):

i f b <= a :
raise I n t e r v a lE r r o r

y1 = f ( a )
i f y1 == 0 :

return a
y2 = f (b)
i f y2 == 0 :

return b
i f np . s i gn ( y1 )∗np . s i gn ( y2 ) > 0 :

raise SignError
cnt = 0
while abs ( a−b)> t o l and cnt < 100 :

c = ( a+b)/2
y3 = f ( c )
i f y3 == 0 :

return c
i f np . s i gn ( y1 )∗np . s i gn ( y3 ) < 0 :

b = c
y2 = y3

e l i f np . s i gn ( y2 )∗np . s i gn ( y3 ) < 0 :
a = c
y1 = y3

cnt = cnt+1
return a

# Usage :
def f ( x ) : return x∗∗5−x−1
b i s e c t i o n ( f , 0 , 2 )
# Out : 1.167303978261418



4.2. FUNCTIONAL ITERATION 41

4.2 Functional iteration

Back in section 1.2 we illustrated the fact that the equation cos(x) = x can
be solved by simply iterating the cosine. We explore this more deeply in this
section.

Definition 4.4 (Fixed point). Suppose f : S → R, where S is a subset of R. If
f(x0) = x0, then x0 is called a fixed point of f .

Using this language, the solution of cos(x) = x is simply a fixed point of
the cosine and we can find this fixed point by simply iterating the cosine. As
described in section 1.2, iteration is a fairly simple idea. Given a function f ,
we start with a real number (or initial seed) x1 and define a sequence (xn)
recursively by xn+1 = f(xn). It turns out that we might expect this process to
lead to a fixed point, if we iterate a particular type of function.

Definition 4.5 (Contraction). Suppose f : S → R, where S is a subset of R.
If there is a number r such that 0 < r < 1 and

|f(x)− f(y)| ≤ r|x − y|
for all x, y ∈ S, then f is called a contraction on S and the number r is called
a contraction ratio.

Now suppose that f is a contraction on an interval I with contraction ratio
r and that f has a fixed point x0 ∈ I. Then, it’s immediately apparent that

|f(x)− x0| ≤ r|x − x0|
for all x ∈ I. But then

|f2(x)− x0| ≤ r2|x− x0|,
etc. As a result, iteration of f from an arbitrary starting point in I will generate
a sequence that tends geometrically to x0.

But, when might we expect a function to be a contraction? One possible
answer is provided by the mean value theorem. This was stated as a special
case of Taylor’s theorem back in example 2.8, but it is quite important in its
own right.

Theorem 4.6 (Mean Value Theorem). Suppose that a function is continuous
on the closed interval [a, b] and differentiable on the open interval (a, b). Then,
there is a number ξ in (a, b) such that

f(b)− f(a) = f ′(ξ)(b − a).
An immediate corollary is that, if f satisfies |f ′(x)| ≤ r < 1 for all x in

(a, b), then f is a contraction on (a, b) with contraction ratio r. Furthermore, if
f is continuously differentiable (meaning that f ′ exists and is continuous) with
|f ′(x0)| < r < 1, then there will be an interval I about x0 with |f ′(x0)| ≤ r
on that interval. We thus have a wonderfully simple criterion to test when we
might expect functional iteration to work - we need |f ′(x0)| < 1. This all leads
to the following terminology:



42 CHAPTER 4. FINDING ROOTS

Definition 4.7 (Attraction). Suppose that f is continuously differentiable on
an open interval and that x0 is a fixed point of f . We say that the fixed point is

• Attractive if |f ′(x0)| < 1

• Super-attractive if f ′(x0) = 0

• Repulsive if |f ′(x0)| > 1

• Neutral if |f ′(x0)| = 1

In fairness, it should be stated that it can be quite hard to find a good
starting point so that iteration will converge to a particular root. A deep in-
vestigation of that general question leads us to chaos theory. In practice, we
typically simply use a graph to find a reasonable initial seed.

Example Problem 4.8. Use functional iteration to find the unique solution
of sin(x/2) = x cos(x/2) in the interval 0 < x < π.

3

3
y=tan(x/2)

3

3
y=2arctan(x)

Figure 4.2: Graphs of function related to sin(x/2) = x cos(x/2)

Solution: The basic idea is to write the equation in the form f(x) = x
for some choice of f . We can then iterate f . One potential rewrite for this
equation is to express it as tan(x/2) = x. However, if we look at the graph of
y = tan(x/2) shown in figure 4.2, we see that it crosses the line y = x with a
slope larger than 1. Another approach is to write it as 2 arctan(x) = x; thus we
can iterate f(x) = 2 arctan(x). A look at the other graph in figure 4.2 indicates
that this should probably work, so let’s try.

import numpy as np
def f ( x ) : return 2∗np . arctan (x )



4.3. NEWTON’S METHOD 43

t o l = 10∗∗(−16)
cnt = 0
x1 = 2
x2 = f ( x1 )
while abs ( x1−x2 ) > t o l and cnt < 100 :

x1 = x2
x2 = f ( x2 )
cnt = cnt+1

x2
# Out : 2.3311223704144224

⊣

4.3 Newton’s Method

Newton’s method is an iterative technique to find a root of a function. Under
certain mild assumptions on f with a root x0, we can find a new function N(x)
with the property that x0 is a super-attractive fixed point of N . As a result,
we’ll be able to find the root of f by iterating N .

The derivation of Newton’s method is based on linearization. Assuming that
xk is close to a root of f , then we can generate new point xk+1 that is (hopefully)
closer to the root by finding a root of the linear approximation to f at xk:

L(x) = f(xk) + f ′(xk)(x − xk).
Setting L(x) = 0, solving for x and calling are new xk+1 this new solution, we
find that

xk+1 = xk − f(xk)/f ′(xk). (4.1)

Figure 4.3 illustrates this procedure and shows why we might expect for xk+1

to be closer to xk.

4.3.1 Connection with functional iteration

As it turns out, Newton’s method typically converges very quickly, though the
proper choice of an initial seed can be tricky. Our understanding of functional
iteration can shed light on this. From this perspective, Newton’s method boils
down to iteration of the function N(x) defined by

N(x) = x− f(x)/f ′(x).

Let us assume now that x0 is a root of f . The fact that Newton’s method might
converge rapidly to x0 boils down to two observations:

1. x0 is a fixed point of N :
This is a simple computation:

N(x0) = x0 − f(x0)/f ′(x0) = x0 − 0 = x0,

since x0 is a root of f .



44 CHAPTER 4. FINDING ROOTS

xk+1

xk

f(xk+1)

f(xk)

Figure 4.3: One iteration of Newton’s method is shown for a quadratic function
f(x). The linearization of f(x) at xk is shown. It is clear that xk+1 is a root
of the linearization. It happens to be the case that |f(xk+1)| is smaller than
|f(xk)| , i.e., xk+1 is a better guess than xk.

2. If f ′(x0) 6= 0, then x0 is super-attractive under iteration of N .
Another computation:

N ′(x0) = 1− f ′(x0)
2 − f ′′(x0)f(x0)

f ′(x0)2

= 1− f ′(x0)
2

f ′(x0)2
= 0.

4.3.2 Implementation

Use of Newton’s method requires that the function f(x) be differentiable. More-
over, the derivative of the function must be known. This may preclude Newton’s
method from being used when f(x) is a black box. As is the case for the bi-
section method, our algorithm cannot explicitly check for continuity of f(x).
Moreover, the success of Newton’s method is dependent on the initial guess x0.
This was also the case with bisection, but for bisection there was an easy test
of the initial interval–i.e., test if f(a0)f(b0) < 0.

Our algorithm will test for goodness of the estimate by looking at |f(xk)| .
The algorithm will also test for near-zero derivative. Note that if it were the
case that f ′(xk) = 0 then h would be ill defined.



4.3. NEWTON’S METHOD 45

Algorithm 1: Algorithm for finding root by Newton’s Method.

Input: a function, its derivative, an initial guess, an iteration
limit, and a tolerance
Output: a point for which the function has small value.
run newton(f, f ′, x0, N, tol)
(1) Let x← x0, n← 0.
(2) while n ≤ N
(3) Let fx← f(x).
(4) if |fx| < tol
(5) return x.
(6) Let fpx← f ′(x).
(7) if |fpx| < tol
(8) Warn “f ′(x) is small; giving up.”
(9) return x.
(10) Let x← x− fx/fpx.
(11) Let n← n+ 1.

4.3.3 Problems

As mentioned above, convergence is dependent on f(x), and the initial estimate
x0. A number of conceivable problems might come up. We illustrate them here.

Example 4.9. Consider Newton’s method applied to the function f(x) = xj

with j > 1, and with initial estimate x0 6= 0.
Note that f(x) = 0 has the single root x = 0. Now note that

xk+1 = xk −
xjk

jxj−1
k

=

(

1− 1

j

)

xk.

Since the equation has the single root x = 0, we find that xk is converging to the
root. However, it is converging at a rate slower than we expect from Newton’s
method: at each step we have a constant decrease of 1− (1/j) , which is a larger
number (and thus worse decrease) when j is larger.

Example 4.10. Consider Newton’s method applied to the function f(x) = ln x
x ,

with initial estimate x0 = 3.
Note that f(x) is continuous on R

+. It has a single root at x = 1. Our initial
guess is not too far from this root. However, consider the derivative:

f ′(x) =
x 1
x − lnx

x2
=

1− lnx

x2

If x > e1, then 1 − lnx < 0, and so f ′(x) < 0. However, for x > 1, we know
f(x) > 0. Thus taking

xk+1 = xk −
f(xk)

f ′(xk)
> xk.

The estimates will “run away” from the root x = 1.



46 CHAPTER 4. FINDING ROOTS

Example 4.11. Consider Newton’s method applied to the function f(x) =
sin (x) for the initial estimate x0 6= 0, where x0 has the odious property 2x0 =
tanx0.
You should verify that there are an infinite number of such x0. Consider the
identity of x1 :

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

sin(x0)

cos(x0)
= x0 − tanx0 = x0 − 2x0 = −x0.

Now consider x2 :

x2 = x1−
f(x1)

f ′(x1)
= −x0−

sin(−x0)
cos(−x0)

−x0+
sin(x0)

cos(x0)
= −x0+tanx0 = −x0+2x0 = x0.

Thus Newton’s method “cycles” between the two values x0,−x0.
Of course, Newton’s method may find some iterate xk for which f ′(xk) = 0,

in which case, there is no well-defined xk+1.

4.3.4 Convergence

When Newton’s Method converges, it actually displays quadratic convergence.
That is, if ek = xk − r, where r is the root that the xk are converging to, that
|ek+1| ≤ C |ek|2 . If, for example, it were the case that C = 1, then we would
double the accuracy of our root estimate with each iterate. That is, if e0 were
0.001, we would expect e1 to be on the order of 0.000001. The following theorem
formalizes our claim:

Theorem 4.12 (Newton’s Method Convergence). If f(x) has two continuous
derivatives, and r is a simple root of f(x), then there is some D such that if
|x0 − r| < D, Newton’s method will converge quadratically to r.

The proof is based on arguments from real analysis, and is omitted; see
Cheney & Kincaid for the proof [?]. Take note of the following, though:

1. The proof requires that r be a simple root, that is that f ′(r) 6= 0. When
this does not hold we may get only linear convergence, as in Example 4.9.

2. The key to the proof is using Taylor’s theorem, and the definition of New-
ton’s method to show that

ek+1 =
−f ′′(ξk)e

2
k

2f ′(xk)
,

where ξk is between xk and r = xk + ek.
The proof then proceeds by showing that there is some region about r
such that
(a) in this region |f ′′(x)| is not too large and |f ′(x)| is not too small, and
(b) if xk is in the region, then xk+1 is in the region.
In particular the region is chosen to be so small that if xk is in the region,
then the factor e2k will outweigh the factor |f ′′(ξk)| /2 |f ′(xk)| . You can
roughly think of this region as an “attractor” region for the root.



4.3. NEWTON’S METHOD 47

3. The theorem never guarantees that some xk will fall into the “attractor”
region of a root r of the function, as in Example 4.10 and Example 4.11.
The theorem that follows gives sufficient conditions for convergence to a
particular root.

Theorem 4.13 (Newton’s Method Convergence II [?]). If f(x) has two con-
tinuous derivatives on [a, b], and

1. f(a)f(b) < 0,
2. f ′(x) 6= 0 on [a, b],
3. f ′′(x) does not change sign on [a, b],
4. Both |f(a)| ≤ (b− a) |f ′(a)| and |f(b)| ≤ (b− a) |f ′(b)| hold,

then Newton’s method converges to the unique root of f(x) = 0 for any choice
of x0 ∈ [a, b] .

4.3.5 Using Newton’s Method

Newton’s Method can be used to program more complex functions using only
simple functions. Suppose you had a computer which could perform addition,
subtraction, multiplication, division, and storing and retrieving numbers, and it
was your task to write a subroutine to compute some complex function g(·). One
way of solving this problem is to have your subroutine use Newton’s Method
to solve some equation equivalent to g(z)− x = 0, where z is the input to the
subroutine. Note that it is assumed the subroutine cannot evaluate g(z) directly,
so this equation needs to be modified to satisfy the computer’s constraints.

Quite often when dealing with problems of this type, students make the
mistake of using Newton’s Method to try to solve a linear equation. This should
be an indication that a mistake was made, since Newton’s Method can solve a
linear equation in a single step:

Example 4.14. Consider Newton’s method applied to the function f(x) = ax+
b. The iteration is given as

xk+1 ← xk −
axk + b

a
.

This can be rewritten simply as xk+1 ← −b/a.
The following example problems should illustrate this process of “bootstrap-

ping” via Newton’s Method.

Example Problem 4.15. Devise a subroutine using only subtraction and
multiplication that can find the multiplicative inverse of an input number z,
i.e., can find (1/z) . Solution: We are tempted to use the linear function
f(x) = (1/z) − x. But this is a linear equation for which Newton’s Method
would reduce to xk+1 ← (1/z) . Since the subroutine can only use subtraction
and multiplication, this will not work.

Instead apply Newton’s Method to f(x) = z − (1/x) . The Newton step is

xk+1 ← xk −
z − (1/xk)

(1/x2k)
= xk − zx2k + xk = xk (2− zxk) .



48 CHAPTER 4. FINDING ROOTS

Note this step uses only multiplication and subtraction. The subroutine is given
in Algorithm 2. ⊣

Algorithm 2: Algorithm for finding a multiplicative inverse using simple opera-
tions.

Input: a number
Output: its multiplicative inverse
invs(z)
(1) if z = 0 throw an error.
(2) Let x← sign (z) , n← 0.
(3) while n ≤ 50
(4) Let x← x (2− zx) .
(5) Let n← n+ 1.

Example Problem 4.16. Devise a subroutine using only simple operations
which computes the square root of an input number z. Solution: The temptation
is to find a zero for f(x) =

√
z−x. However, this equation is linear in x. Instead

let f(x) = z − x2. You can easily see that if x is a positive root of f(x) = 0,
then x =

√
z. The Newton step becomes

xk+1 ← xk −
z − x2k
−2xk

.

after some simplification this becomes

xk+1 ←
xk
2

+
z

2xk
.

Note this relies only on addition, multiplication and division.
The final subroutine is given in Algorithm 3.

Algorithm 3: Algorithm for finding a square root using simple operations.

Input: a number
Output: its square root
sqrt(z)
(1) if z < 0 throw an error.
(2) Let x← 1, n← 0.
(3) while n ≤ 50
(4) Let x← (x+ z/x) /2.
(5) Let n← n+ 1.

⊣

4.4 Secant Method

The secant method for root finding is roughly based on Newton’s method; how-
ever, it is not assumed that the derivative of the function is known, rather the



4.4. SECANT METHOD 49

xk xk−1

f(xk)

f(xk−1)

xk+1

Figure 4.4: One iteration of the Secant method is shown for some quadratic
function f(x). The secant line through (xk−1, f(xk−1)) and (xk, f(xk)) is shown.
It happens to be the case that |f(xk+1)| is smaller than |f(xk)| , i.e., xk+1 is a
better guess than xk.

derivative is approximated by the value of the function at some of the iterates,
xk. More specifically, the slope of the tangent line at (xk, f(xk)) , which is f ′(xk)
is approximated by the slope of the secant line passing through (xk−1, f(xk−1))
and (xk, f(xk)) , which is

f(xk)− f(xk−1)

xk − xk−1

Thus the iterate xk+1 is the root of this secant line. That is, it is a root to
the equation

f(xk)− f(xk−1)

xk − xk−1
(x− xk) = y − f(xk).

Since the root has a y value of 0, we have

f(xk)− f(xk−1)

xk − xk−1
(xk+1 − xk) = −f(xk),

xk+1 − xk = −
(

xk − xk−1

f(xk)− f(xk−1)

)

f(xk),

xk+1 = xk −
(

xk − xk−1

f(xk)− f(xk−1)

)

f(xk). (4.2)

You will note this is the recurrence of Newton’s method, but with the slope
f ′(xk) substituted by the slope of the secant line. Note also that the secant



50 CHAPTER 4. FINDING ROOTS

method requires two initial guesses, x0, x1, but can be used on a black box
function. The secant method can suffer from some of the same problems that
Newton’s method does, as we will see.

An iteration of the secant method is shown in Figure 4.4, along with the
secant line.

Example 4.17. Consider the secant method used on x3 + x2 − x − 1, with
x0 = 2, x1 = 1

2 .
Note that this function is continuous and has roots ±1. We give the iterates
here:

k xk f(xk)
0 2 9
1 0.5 −1.125
2 0.666666666666667 −0.925925925925926
3 1.44186046511628 2.63467367653163
4 0.868254072087394 −0.459842466254495
5 0.953491494113659 −0.177482458876898
6 1.00706900811804 0.0284762692197613
7 0.999661272951803 −0.0013544492875992
8 0.999997617569723 −9.52969840528617× 10−06

9 1.0000000008072 3.22880033820638× 10−09

10 0.999999999999998 −7.43849426498855× 10−15

4.4.1 Problems

As with Newton’s method, convergence is dependent on f(x), and the initial
estimates x0, x1. We illustrate a few possible problems:

Example 4.18. Consider the secant method for the function f(x) = lnx
x , with

x0 = 3, x1 = 4.
As with Newton’s method, the iterates diverge towards infinity, looking for a



4.4. SECANT METHOD 51

nonexistant root. We give some iterates here:

k xk f(xk)
0 3 0.366204096222703
1 4 0.346573590279973
2 21.6548475770851 0.142011128224341
3 33.9111765137635 0.103911011441661
4 67.3380435135758 0.0625163004418104
5 117.820919458675 0.0404780904944712
6 210.543986613847 0.0254089165873003
7 366.889164762149 0.0160949419231219
8 637.060241341843 0.010135406045582
9 1096.54125113444 0.00638363233543847
10 1878.34688714646 0.00401318169994875
11 3201.94672271613 0.0025208146648422
12 5437.69020766155 0.00158175793894727
13 9203.60222260594 0.000991714984152597
14 15533.1606791089 0.000621298692241343
15 26149.7196085218 0.000388975250950428
16 43924.8466075548 0.000243375589137882
17 73636.673898472 0.000152191807070607

Example 4.19. Consider Newton’s method applied to the function f(x) =
1

1+x2 − 1
17 , with initial estimates x0 = −1, x1 = 1.

You can easily verify that f(x0) = f(x1), and thus the secant line is horizontal.
And thus x2 is not defined.

Algorithm 4: Algorithm for finding root by secant method.

Input: a function, initial guesses, an iteration limit, and a tolerance
Output: a point for which the function has small value.
run secant(f, x0, x1, N, tol)
(1) Let x← x1, xp← x0, fh← f(x1), fp← f(x0), n← 0.
(2) while n ≤ N
(3) if |fh| < tol
(4) return x.
(5) Let fpx← (fh− fp)/(x− xp).
(6) if |fpx| < tol
(7) Warn “secant slope is too small; giving up.”
(8) return x.
(9) Let xp← x, fp← fh.
(10) Let x← x− fh/fpx.
(11) Let fh← f(x).
(12) Let n← n+ 1.



52 CHAPTER 4. FINDING ROOTS

4.4.2 Convergence

We consider convergence analysis as in Newton’s method. We assume that r
is a root of f(x), and let en = r − xn. Because the secant method involves
two iterates, we assume that we will find some relation between ek+1 and the
previous two errors, ek, ek−1.

Indeed, this is the case. Omitting all the nasty details (see Cheney & Kincaid
[?]), we arrive at the imprecise equation:

ek+1 ≈ − f
′′(r)

2f ′(r)
ekek−1 = Cekek−1.

Again, the proof relies on finding some “attractor” region and using continuity.
We now postulate that the error terms for the secant method follow some

power law of the following type:

|ek+1| ∼ A |ek|α .

Recall that this held true for Newton’s method, with α = 2. We try to find the
α for the secant method. Note that

|ek| = A |ek−1|α ,

so
|ek−1| = A− 1

α |ek|
1
α .

Then we have

A |ek|α = |ek+1| = C |ek| |ek−1| = CA− 1
α |ek|1+

1
α ,

Since this equation is to hold for all ek, we must have

α = 1 +
1

α
.

This is solved by α = 1
2

(

1 +
√
5
)

≈ 1.62. Thus we say that the secant
method enjoys superlinear convergence; This is somewhere between the conver-
gence rates for bisection and Newton’s method.



4.4. SECANT METHOD 53

Exercises

(4.1) Consider the bisection method applied to find the zero of the function
f(x) = x2 − 5x+3, with a0 = 0, b0 = 1. What are a1, b1? What are a2, b2
?

(4.2) Approximate
√
10 by using two steps of Newton’s method, with an initial

estimate of x0 = 3. (cf. Example Problem 4.16) Your answer should be
correct to 5 decimal places.

(4.3) Consider bisection for finding the root to cosx = 0. Let the initial interval
I0 be [0, 2]. What is the next interval considered, call it I1? What is I2?
I6?

(4.4) Use functional iteration to find the unique postive root of f(x) = sin(x)−
x/2.

(4.5) In example 4.8 we solved sin(x/2) = x cos(x/2) by iterating f(x) =
2 arctan(x). Determine the set of all seeds that converge to the desired
solution. How might you prove that this set of seeds works?
Show that x2 = 3 is algebraically equivalent to x = (x + 3/x)/2 and
use this to approximate

√
3 via functional iteration. What is the rate of

convergence?
(4.6) What does the sequence defined by

x0 = 1, xk+1 =
1

2
xk +

1

xk

converge to?
(4.7) Devise a subroutine using only simple operations that finds, via Newton’s

Method, the cubed root of some input number z.
(4.8) Use Newton’s Method to approximate 3

√
9. Start with x0 = 2. Find x2.

(4.9) Use Newton’s Method to devise a sequence x0, x1, . . . such that xk → ln 10.
Is this a reasonable way to write a subroutine that, given z, computes ln z?
(Hint: such a subroutine would require computation of exk . Is this possible
for rational xk without using a logarithm? Is it practical?)

(4.10) Give an example (graphical or analytic) of a function, f(x) for which
Newton’s Method:
(a) Does not find a root for some choices of x0.
(b) Finds a root for every choice of x0.
(c) Falls into a cycle for some choice of x0.
(d) Converges slowly to the zero of f(x).

(4.11) How will Newton’s Method perform for finding the root to f(x) =
√

|x| =
0?

(4.12) Implement the inverse finder described in Example Problem 4.15. Your
m-file should have header line like:
function c = invs(z)

where z is the number to be inverted. You may wish to use the builtin
function sign. As an extra termination condition, you should have the
subroutine return the current iterate if zx is sufficiently close to 1, say
within the interval (0.9999, 0.0001). Can you find some z for which the
algorithm performs poorly?



54 CHAPTER 4. FINDING ROOTS

(4.13) Implement the bisection method in octave/Matlab. Your m-file should
have header line like:
function c = run_bisection(f, a, b, tol)

where f is the name of the function. Recall that feval(f,x) when f is a
string with the name of some function evaluates that function at x. This
works for builtin functions and m-files.
(a) Run your code on the function f(x) = cosx, with a0 = 0, b0 = 2. In

this case you can set f = "cos".
(b) Run your code on the function f(x) = x2−5x+3, with a0 = 0, b0 = 1.

In this case you will have to set f to the name of an m-file (without
the “.m”) which will evaluate the given f(x).

(c) Run your code on the function f(x) = x− cosx, with a0 = 0, b0 = 1.
(4.14) Implement Newton’s Method. Your m-file should have header line like:

function x = run_newton(f, fp, x0, N, tol)

where f is the name of the function, and fp is its derivative. Run your
code to find zeroes of the following functions:
(a) f(x) = tanx− x.
(b) f(x) = x2 − (2 + ǫ)x+ 1 + ǫ, for ǫ small.
(c) f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1.

(d) f(x) = (x− 1)
7
.

(4.15) Implement the secant method Your m-file should have header line like:
function x = run_secant(f, x0, x1, N, tol)

where f is the name of the function. Run your code to find zeroes of the
following functions:
(a) f(x) = tanx− x.
(b) f(x) = x2 + 1. (Note: This function has no zeroes.)
(c) f(x) = 2 + sinx. (Note: This function also has no zeroes.)



Chapter 5

Interpolation

5.1 Polynomial Interpolation

We consider the problem of finding a polynomial that interpolates a given set
of values:

x x0 x1 . . . xn
y y0 y1 . . . yn

where the xi are all distinct. A polynomial p(x) is said to interpolate these data
if p(xi) = yi for i = 0, 1, . . . , n. The xi values are called “nodes.”

Sometimes, we will consider a variant of this problem: we have some black
box function, f(x), which we want to approximate with a polynomial p(x). We
do this by finding the polynomial interpolant to the data

x x0 x1 . . . xn
f(x) f(x0) f(x1) . . . f(xn)

for some choice of distinct nodes xi.

5.1.1 Lagranges Method

As you might have guessed, for any such set of data, there is an n-degree poly-
nomial that interpolates it. We present a constructive proof of this fact by use
of Lagrange Polynomials.

Definition 5.1 (Lagrange Polynomials). For a given set of n+1 nodes xi, the
Lagrange polynomials are the n+ 1 polynomials ℓi defined by

ℓi(xj) = δij =

{

0 if i 6= j
1 if i = j

Then we define the interpolating polynomial as

pn(x) =

n
∑

i=0

yiℓi(x).

55



56 CHAPTER 5. INTERPOLATION

If each Lagrange Polynomial is of degree at most n, then pn also has this
property. The Lagrange Polynomials can be characterized as follows:

ℓi(x) =

n
∏

j=0, j 6=i

x− xj
xi − xj

. (5.1)

By evaluating this product for each xj , we see that this is indeed a character-
ization of the Lagrange Polynomials. Moreover, each polynomial is clearly the
product of n monomials, and thus has degree no greater than n.

This gives the theorem

Theorem 5.2 (Interpolant Existence and Uniqueness). Let {xi}ni=0 be distinct
nodes. Then for any values at the nodes, {yi}ni=0, there is exactly one polyno-
mial, p(x) of degree no greater than n such that p(xi) = yi for i = 0, 1, . . . , n.

Proof. The Lagrange Polynomial construction gives existence of such a polyno-
mial p(x) of degree no greater than n.

Suppose there were two such polynomials, call them p(x), q(x), each of degree
no greater than n, both interpolating the data. Let r(x) = p(x) − q(x). Note
that r(x) can have degree no greater than n, yet it has roots at x0, x1, . . . , xn.
The only polynomial of degree ≤ n that has n + 1 distinct roots is the zero
polynomial, i.e., 0 ≡ r(x) = p(x) − q(x). Thus p(x), q(x) are equal everywhere,
i.e., they are the same polynomial.

Example Problem 5.3. Construct the polynomial interpolating the data

x 1 1
2 3

y 3 −10 2

by using Lagrange Polynomials. Solution: We construct the Lagrange Polyno-
mials:

ℓ0(x) =
(x− 1

2 )(x − 3)

(1− 1
2 )(1 − 3)

= −(x− 1

2
)(x − 3)

ℓ1(x) =
(x− 1)(x− 3)

(12 − 1)(12 − 3)
=

4

5
(x− 1)(x− 3)

ℓ2(x) =
(x− 1)(x− 1

2 )

(3− 1)(3− 1
2 )

=
1

5
(x− 1)(x− 1

2
)

Then the interpolating polynomial, in “Lagrange Form” is

p2(x) = −3(x−
1

2
)(x− 3)− 8(x− 1)(x− 3) +

2

5
(x− 1)(x− 1

2
)

⊣



5.1. POLYNOMIAL INTERPOLATION 57

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5

l0(x)
l1(x)
l2(x)

Figure 5.1: The 3 Lagrange polynomials for the example are shown. Verify,
graphically, that these polynomials have the property ℓi(xj) = δij for the nodes
1, 12 , 3.

5.1.2 Newton’s Method

There is another way to prove existence. This method is also constructive, and
leads to a different algorithm for constructing the interpolant. One way to view
this construction is to imagine how one would update the Lagrangian form of
an interpolant. That is, suppose some data were given, and the interpolating
polynomial calculated using Lagrange Polynomials; then a new point was given
(xn+1, yn+1), and an interpolant for the augmented set of data is to be found.
Each Lagrange Polynomial would have to be updated. This could take a lot of
calculation (especially if n is large).

So the alternative method constructs the polynomials iteratively. Thus we
create polynomials pk(x) such that pk(xi) = yi for 0 ≤ i ≤ k. This is simple for
k = 0, we simply let

p0(x) = y0,

the constant polynomial with value y0. Then assume we have a proper pk(x)
and want to construct pk+1(x). The following construction works:

pk+1(x) = pk(x) + c(x− x0)(x − x1) · · · (x − xk),

for some constant c. Note that the second term will be zero for any xi for
0 ≤ i ≤ k, so pk+1(x) will interpolate the data at x0, x1, . . . , xk. To get the
value of the constant we calculate c such that

yk+1 = pk+1(xk+1) = pk(xk+1) + c(xk+1 − x0)(xk+1 − x1) · · · (xk+1 − xk).

This construction is known as Newton’s Algorithm, and the resultant form
is Newton’s form of the interpolant



58 CHAPTER 5. INTERPOLATION

-35

-30

-25

-20

-15

-10

-5

 0

 5

 10

 15

 0  0.5  1  1.5  2  2.5  3  3.5  4

p(x)

Figure 5.2: The interpolating polynomial for the example is shown.

Example Problem 5.4. Construct the polynomial interpolating the data

x 1 1
2 3

y 3 −10 2

by using Newton’s Algorithm. Solution: We construct the polynomial itera-
tively:

p0(x) = 3

p1(x) = 3 + c(x− 1)

We want −10 = p1(
1
2 ) = 3 + c(− 1

2 ), and thus c = 26. Then

p2(x) = 3 + 26(x− 1) + c(x− 1)(x− 1

2
)

We want 2 = p2(3) = 3 + 26(2) + c(2)(52 ), and thus c = −53
5 . Then we get

p2(x) = 3 + 26(x− 1) +
−53
5

(x − 1)(x− 1

2
).

⊣

Does Newton’s Algorithm give a different polynomial? It is easy to show, by
induction, that the degree of pn(x) is no greater than n. Then, by Theorem 5.2,
it must be the same polynomial as the Lagrange interpolant.

The two methods give the same interpolant, we may wonder “Which should
we use?” Newton’s Algorithm seems more flexible–it can deal with adding
new data. There also happens to be a way of storing Newton’s form of the
interpolant that makes the polynomial simple to evaluate (in the sense of number
of calculations required).



5.1. POLYNOMIAL INTERPOLATION 59

5.1.3 Newton’s Nested Form

Recall the iterative construction of Newton’s Form:

pk+1(x) = pk(x) + ck(x− x0)(x− x1) · · · (x− xk).

The previous iterate pk(x) was constructed similarly, so we can write:

pk+1(x) = [pk−1(x) + ck−1(x− x0)(x− x1) · · · (x− xk−1)]+ck(x−x0)(x−x1) · · · (x−xk).

Continuing in this way we see that we can write

pn(x) =

n
∑

k=0

ck





∏

0≤j<k

(x− xj)



 , (5.2)

where an empty product has value 1 by convention. This can be rewritten in a
funny form, where a monomial is factored out of each successive summand:

pn(x) = c0 + (x − x0)[c1 + (x− x1)[c2 + (x− x2) [. . .]]]

Supposing for an instant that the constants ck were known, this provides a
better way of calculating pn(t) at arbitrary t. By “better” we mean requiring few
multiplications and additions. This nested calculation is performed iteratively:

v0 = cn

v1 = cn−1 + (t− xn−1)v0

v2 = cn−2 + (t− xn−2)v1

...

vn = c0 + (t− x0)vn−1

This requires only n multiplications and 2n additions. Compare this with
the number required for using the Lagrange form: at least n2 additions and
multiplications.

5.1.4 Divided Differences

It turns out that the coefficients ck for Newton’s nested form can be calculated
relatively easily by using divided differences. We assume, for the remainder of
this section, that we are considering interpolating a function, that is, we have
values of f(xi) at the nodes xi.

Definition 5.5 (Divided Differences). For a given collection of nodes {xi}ni=0

and values {f(xi)}nx=0, a k
th order divided difference is a function of k+1 (not

necessarily distinct) nodes, written as

f [xi0 , xi1 , . . . , xik ]

The divided differences are defined recursively as follows:



60 CHAPTER 5. INTERPOLATION

• The 0th order divided differences are simply defined:

f [xi] = f(xi).

• Higher order divided differences are the ratio of differences:

f [xi0 , xi1 , . . . , xik ] =
f [xi1 , xi2 , . . . , xik ]− f

[

xi0 , xi1 , . . . , xik−1

]

xik − xi0
We care about divided differences because coefficients for the Newton nested

form are divided differences:

ck = f [x0, x1, . . . , xk] . (5.3)

Because we are only interested in the Newton method coefficients, we will
only consider divided differences with successive nodes, i.e., those of the form
f [xj , xj+1, . . . , xj+k]. In this case the higher order differences can more simply
be written as

f [xj , xj+1, . . . , xj+k] =
f [xj+1, xj+2, . . . , xj+k]− f [xj , xj+1, . . . , xj+k−1]

xj+k − xj
The graphical way to calculate these things is a “pyramid scheme”1, where

you compute the following table columnwise, from left to right:

x f [ ] f [ , ] f [ , , ] f [ , , , ]
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x2]
x3 f [x3]

Note that by definition, the first column just echoes the data: f [xi] = f(xi).
We drag out our example one last time:

Example Problem 5.6. Find the divided differences for the following data

x 1 1
2 3

f(x) 3 −10 2

Solution: We start by writing in the data:

x f [ ] f [ , ] f [ , , ]
1 3

1
2 −10

3 2

1That’s supposed to be a joke.



5.2. ERRORS IN POLYNOMIAL INTERPOLATION 61

Then we calculate:

f [x0, x1] =
−10− 3

(1/2)− 1
= 26, and f [x1, x2] =

2−−10
3− (1/2)

= 24/5.

Adding these to the table, we have

x f [ ] f [ , ] f [ , , ]
1 3

26
1
2 −10

24
5

3 2

Then we calculate

f [x0, x1, x2] =
24/5− 26

3− 1
=
−53
5
.

So we complete the table:

x f [ ] f [ , ] f [ , , ]
1 3

26
1
2 −10 −53

5
24
5

3 2

You should verify that along the top line of this pyramid you can read off the
coefficients for Newton’s form, as found in Example Problem 5.4. ⊣

5.2 Errors in Polynomial Interpolation

We now consider two questions:
1. If we want to interpolate some function f(x) at n + 1 nodes over some

closed interval, how should we pick the nodes?
2. How accurate can we make a polynomial interpolant over a closed interval?
You may be surprised to find that the answer to the first question is not that

we should make the xi equally spaced over the closed interval, as the following
example illustrates.

Example 5.7 (Runge Function). Let

f(x) =
(

1 + x2
)−1

,

(known as the Runge Function), and let pn(x) interpolate f on n equally spaced
nodes, including the endpoints, on [−5, 5]. Then

lim
n→∞

max
x∈[−5,5]

|pn(x)− f(x)| =∞.

This behaviour is shown in Figure 5.3.



62 CHAPTER 5. INTERPOLATION

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

runge
3 nodes
7 nodes

10 nodes

(a) 3,7,10 equally spaced nodes

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-6 -4 -2  0  2  4  6

runge
15 nodes

(b) 15 equally spaced nodes

-700000

-600000

-500000

-400000

-300000

-200000

-100000

 0

 100000

-6 -4 -2  0  2  4  6

runge
50 nodes

(c) 50 equally spaced nodes

Figure 5.3: The Runge function is poorly interpolated at n equally spaced nodes,
as n gets large. At first, the interpolations appear to improve with larger n, as
in (a). In (b) it becomes apparent that the interpolant is good in center of the
interval, but bad at the edges. As shown in (c), this gets worse as n gets larger.



5.2. ERRORS IN POLYNOMIAL INTERPOLATION 63

It turns out that a much better choice is related to the Chebyshev Polynomi-
als (“of the first kind”). If our closed interval is [−1, 1], then we want to define
our nodes as

xi = cos

[(

2i+ 1

2n+ 2

)

π

]

, 0 ≤ i ≤ n.

Literally interpreted, these Chebyshev Nodes are the projections of points
uniformly spaced on a semi circle; see Figure 5.4. By using the Chebyshev
nodes, a good polynomial interpolant of the Runge function of Example 5.7 can
be found, as shown in Figure 5.5.

topleft

11−

Figure 5.4: The Chebyshev nodes are the projections of nodes equally spaced
on a semi circle.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

runge
3 nodes
7 nodes

10 nodes

(a) 3,7,10 Chebyshev nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-6 -4 -2  0  2  4  6

runge
17 nodes

(b) 17 Chebyshev nodes

Figure 5.5: The Chebyshev nodes yield good polynomial interpolants of the
Runge function. Compare these figures to those of Figure 5.3. For more than
about 25 nodes, the interpolant is indistinguishable from the Runge function by
eye.



64 CHAPTER 5. INTERPOLATION

5.2.1 Interpolation Error Theorem

We did not just invent the Chebyshev nodes. The fact that they are “good” for
interpolation follows from the following theorem:

Theorem 5.8 (Interpolation Error Theorem). Let p be the polynomial of degree
at most n interpolating function f at the n+ 1 distinct nodes x0, x1, . . . , xn on
[a, b]. Let f (n+1) be continuous. Then for each x ∈ [a, b] there is some ξ ∈ [a, b]
such that

f(x)− p(x) = 1

(n+ 1)!
f (n+1)(ξ)

n
∏

i=0

(x− xi) .

You should be thinking that the term on the right hand side resembles the
error term in Taylor’s Theorem.

Proof. First consider when x is one of the nodes xi; in this case both the LHS
and RHS are zero. So assume x is not a node. Make the following definitions

w(t) =

n
∏

i=0

(t− xi) ,

c =
f(x)− p(x)

w(x)
,

φ(t) = f(t)− p(t)− cw(t).

Since x is not a node, w(x) is nonzero. Now note that φ(xi) is zero for each
node xi, and that by definition of c, that φ(x) = 0 for our x. That is φ(t) has
n+ 2 roots.

Some other facts: f, p, w have n + 1 continuous derivatives, by assumption
and definition; thus φ has this many continuous derivatives. Apply Rolle’s
Theorem to φ(t) to find that φ′(t) has n+1 roots. Then apply Rolle’s Theorem
again to find φ′′(t) has n roots. In this way we see that φ(n+1)(t) has a root,
call it ξ. That is

0 = φ(n+1)(ξ) = f (n+1)(ξ)− p(n+1)(ξ)− cw(n+1)(ξ).

But p(t) is a polynomial of degree ≤ n, so p(n+1) is identically zero. And
w(t) is a polynomial of degree n+ 1 in t, so its n+ 1th derivative is easily seen
to be (n+ 1)! Thus

0 = f (n+1)(ξ)− c(n+ 1)!

c(n+ 1)! = f (n+1)(ξ)

f(x)− p(x)
w(x)

=
1

(n+ 1)!
f (n+1)(ξ)

f(x)− p(x) = 1

(n+ 1)!
f (n+1)(ξ)w(x),

which is what was to be proven.



5.2. ERRORS IN POLYNOMIAL INTERPOLATION 65

Thus the error in a polynomial interpolation is given as

f(x)− p(x) = 1

(n+ 1)!
f (n+1)(ξ)

n
∏

i=0

(x− xi) .

We have no control over the function f(x) or its derivatives, and once the nodes
and f are fixed, p is determined; thus the only way we can make the error
|f(x)− p(x)| small is by judicious choice of the nodes xi.

The Chebyshev nodes on [−1, 1] have the remarkable property that

∣

∣

∣

∣

∣

n
∏

i=0

(t− xi)
∣

∣

∣

∣

∣

≤ 2−n

for any t ∈ [−1, 1] . Moreover, it can be shown that for any choice of nodes xi
that

max
t∈[−1,1]

∣

∣

∣

∣

∣

n
∏

i=0

(t− xi)
∣

∣

∣

∣

∣

≥ 2−n.

Thus the Chebyshev nodes are considered the best for polynomial interpolation.
Merging this result with Theorem 5.8, the error for polynomial interpolants

defined on Chebyshev nodes can be bounded as

|f(x)− p(x)| ≤ 1

2n (n+ 1)!
max

ξ∈[−1,1]

∣

∣

∣f (n+1)(ξ)
∣

∣

∣ .

The Chebyshev nodes can be rescaled and shifted for use on the general
interval [α, β]. In this case they take the form

xi =
β − α
2

cos

[(

2i+ 1

2n+ 2

)

π

]

+
α+ β

2
, 0 ≤ i ≤ n.

In this case, the rescaling of the nodes changes the bound on
∏

(t − xi) so the
overall error bound becomes

|f(x)− p(x)| ≤ (β − α)n+1

22n+1 (n+ 1)!
max

ξ∈[α,β]

∣

∣

∣f (n+1)(ξ)
∣

∣

∣ ,

for x ∈ [α, β] .

Example Problem 5.9. How many Chebyshev nodes are required to interpo-
late the function f(x) = sin(x) + cos(x) to within 10−8 on the interval [0, π]?
Solution: We first find the derivatives of f

f ′(x) = cos(x) − sin(x)

f ′′(x) = − sin(x) − cos(x)

f ′′′(x) = − cos(x) + sin(x)

...



66 CHAPTER 5. INTERPOLATION

As a crude approximation we can assert that
∣

∣

∣
f (k)(x)

∣

∣

∣
≤ |cosx|+ |sinx| ≤ 2.

Thus it suffices to take n large enough such that

πn+1

22n+1 (n+ 1)!
2 ≤ 10−8

By trial and error we see that n = 10 suffices. ⊣

5.2.2 Interpolation Error for Equally Spaced Nodes

Despite the proven superiority of Chebyshev Nodes, and the problems with the
Runge Function, equally spaced nodes are frequently used for interpolation,
since they are easy to calculate2. We now consider bounding

max
x∈[a,b]

n
∏

i=0

|x− xi| ,

where

xi = a+ hi = a+
(b− a)
n

i, i = 0, 1, . . . , n.

Start by picking an x. We can assume x is not one of the nodes, otherwise
the product in question is zero. Then x is between some xj , xj+1 We can show
that

|x− xj | |x− xj+1| ≤
h2

4
.

by simple calculus.
Now we claim that |x− xi| ≤ (j − i+ 1)h for i < j, and |x− xi| ≤ (i− j)h

for j + 1 < i. Then

n
∏

i=0

|x− xi| ≤
h2

4

[

(j + 1)!hj
] [

(n− j)!hn−j−1
]

.

It can be shown that (j + 1)!(n− j)! ≤ n!, and so we get an overall bound

n
∏

i=0

|x− xi| ≤
hn+1n!

4
.

The interpolation theorem then gives us

|f(x)− p(x)| ≤ hn+1

4 (n+ 1)
max
ξ∈[a,b]

∣

∣

∣f (n+1)(ξ)
∣

∣

∣ ,

where h = (b − a)/n.
The reason this result does not seem to apply to Runge’s Function is that

f (n) for Runge’s Function becomes unbounded as n→∞.
2Never underestimate the power of laziness.



5.2. ERRORS IN POLYNOMIAL INTERPOLATION 67

Example Problem 5.10. How many equally spaced nodes are required to inter-
polate the function f(x) = sin(x) + cos(x) to within 10−8 on the interval [0, π]?
Solution: As in Example Problem 5.9, we make the crude approximation

∣

∣

∣
f (k)(x)

∣

∣

∣
≤ |cosx|+ |sinx| ≤ 2.

Thus we want to make n sufficiently large such that

hn+1

4(n+ 1)
2 ≤ 10−8,

where h = (π − 0)/n. That is we want to find n large enough such that

πn+1

2nn+1(n+ 1)
≤ 10−8,

By simply trying small numbers, we can see this is satisfied if n = 12. ⊣



68 CHAPTER 5. INTERPOLATION

Exercises

(5.1) Find the Lagrange Polynomials for the nodes {−1, 1}.
(5.2) Find the Lagrange Polynomials for the nodes {−1, 1, 5}.
(5.3) Find the polynomial of degree no greater than 2 that interpolates

x −1 1 5
y 3 3 −2

(5.4) Complete the divided differences table:

x f [ ] f [ , ] f [ , , ]
−1 3

1 3

5 −2

Find the Newton form of the polynomial interpolant.
(5.5) Find the polynomial of degree no greater than 3 that interpolates

x −1 1 5 −3
y 3 3 −2 4

(Hint: reuse the Newton form of the polynomial from the previous ques-
tion.)

(5.6) Find the nested form of the polynomial interpolant of the data

x 1 3 4 6
y −3 13 21 1

by completing the following divided differences table:

x f [ ] f [ , ] f [ , , ] f [ , , , ]
1 −3

3 13

4 21

6 1

(5.7) Find the polynomial of degree no greater than 3 that interpolates

x 1 0 3/2 2
y 3 2 37/8 8



5.2. ERRORS IN POLYNOMIAL INTERPOLATION 69

(5.8) Complete the divided differences table:

x f [ ] f [ , ] f [ , , ] f [ , , , ]
−1 6

0 3

1 2

2 3

(Something a little odd should have happened in the last column.) Find
the Newton form of the polynomial interpolant. Of what degree is the
polynomial interpolant?

(5.9) Let p(x) interpolate the function cos(x) at n equally spaced nodes on the
interval [0, 2]. Bound the error

max
0≤x≤2

|p(x) − cos(x)|

as a function of n. How small is the error when n = 10? How small would
the error be if Chebyshev nodes were used instead? How about when
n = 10?

(5.10) Let p(x) interpolate the function x−2 at n equally spaced nodes on the
interval [0.5, 1]. Bound the error

max
0.5≤x≤1

∣

∣p(x)− x−2
∣

∣

as a function of n. How small is the error when n = 10?
(5.11) How many Chebyshev nodes are required to interpolate the function 1

x
to within 10−6 on the interval [1, 2]?

(5.12) Write code to calculate the Newton form coefficients, by divided differ-
ences, for the nodes xi and values f(xi). Your m-file should have header
line like:
function coefs = newtonCoef(xs,fxs)

where xs is the vector of n+ 1 nodes, and fxs the vector of n+ 1 values.
Test your code on the following input:
octave:1> xs = [1 -1 2 -2 3 -3 4 -4];

octave:2> fxs = [1 1 2 3 5 8 13 21];

octave:3> newtonCoef(xs,fxs)

ans =

1.00000 -0.00000 0.33333 -0.08333 0.05000 0.00417 -0.00020 -0.00040

(a) What do you get when you try the following?
octave:4> xs = [1 4 5 9 14 23 37 60];

octave:5> fxs = [3 1 4 1 5 9 2 6];

octave:6> newtonCoef(xs,ys)



70 CHAPTER 5. INTERPOLATION

(b) Try the following:
octave:7> xs = [1 3 4 2 8 -2 0 14 23 15];

octave:8> fxs = xs.*xs + xs .+ 4;

octave:9> newtonCoef(xs,fxs)

(5.13) Write code to calculate a polynomial interpolant from its Newton form
coefficients and the node values. Your m-file should have header line like:
function y = calcNewton(t,coefs,xs)

where coefs is a vector of the Newton coefficients, xs is a vector of the
nodes xi, and y is the value of the interpolating polynomial at t. Check
your code against the following values:
octave:1> xs = [1 3 4];

octave:2> coefs = [6 5 1];

octave:3> calcNewton (5,coefs,xs)

ans = 34

octave:4> calcNewton (-3,coefs,xs)

ans = 10

(a) What do you get when you try the following?
octave:5> xs = [3 1 4 5 9 2 6 8 7 0];

octave:6> coefs = [1 -1 2 -2 3 -3 4 -4 5 -5];

octave:7> calcNewton(0.5,coefs,xs)

(b) Try the following
octave:8> xs = [3 1 4 5 9 2 6 8 7 0];

octave:9> coefs = [1 -1 2 -2 3 -3 4 -4 5 -5];

octave:10> calcNewton(1,coefs,xs)



Chapter 6

Spline Interpolation

Splines are used to approximate complex functions and shapes. A spline is a
function consisting of simple functions glued together. In this way a spline is
different from a polynomial interpolation, which consists of a single well de-
fined function that approximates a given shape; splines are normally piecewise
polynomial.

6.1 First and Second Degree Splines

Splines make use of partitions, which are a way of cutting an interval into a
number of subintervals.

Definition 6.1 (Partition). A partition of the interval [a, b] is an ordered se-
quence {ti}ni=0 such that

a = t0 < t1 < · · · < tn−1 < tn = b

The numbers ti are known as knots.

A spline of degree 1, also known as a linear spline, is a function which is
linear on each subinterval defined by a partition:

Definition 6.2 (Linear Splines). A function S is a spline of degree 1 on [a, b]
if

1. The domain of S is [a, b].
2. S is continuous on [a, b].
3. There is a partition {ti}ni=0 of [a, b] such that on each [ti, ti+1], S is a

linear polynomial.

A linear spline is defined entirely by its value at the knots. That is, given

t t0 t1 . . . tn
y y0 y1 . . . yn

71



72 CHAPTER 6. SPLINE INTERPOLATION

there is only one linear spline with these values at the knots and linear on each
given subinterval.

For a spline with this data, the linear polynomial on each subinterval is
defined as

Si(x) = yi +
yi+1 − yi
ti+1 − ti

(x− ti) .

Note that if x ∈ [ti, ti+1] , then x − ti > 0, but x − ti−1 ≤ 0. Thus if we wish
to evaluate S(x), we search for the largest i such that x− ti > 0, then evaluate
Si(x).

Example 6.3. The linear spline for the following data

t 0.0 0.1 0.4 0.5 0.75 1.0
y 1.3 4.5 2.0 2.1 5.0 3

is shown in Figure 6.1.

[height=0.65angle=270,clip=]figs/spline1.eps

Figure 6.1: A linear spline. The spline is piecewise linear, and is linear between
each knot.

6.1.1 First Degree Spline Accuracy

As with polynomial functions, splines are used to interpolate tabulated data as
well as functions. In the latter case, if the spline is being used to interpolate
the function f, say, then this is equivalent to interpolating the data

t t0 t1 . . . tn
y f(t0) f(t1) . . . f(tn)

A function and its linear spline interpolant are shown in Figure 6.2. The
spline interpolant in that figure is fairly close to the function over some of the
interval in question, but it also deviates greatly from the function at other
points of the interval. We are interested in finding bounds on the possible error
between a function and its spline interpolant.

To find the error bound, we will consider the error on a single interval of
the partition, and use a little calculus.1 Suppose p(t) is the linear polynomial
interpolating f(t) at the endpoints of the subinterval [ti, ti+1], then for t ∈
[ti, ti+1] ,

|f(t)− p(t)| ≤ max {|f(t)− f(ti)| , |f(t)− f(ti+1)|} .

That is, |f(t)− p(t)| is no larger than the “maximum variation” of f(t) on this
interval.

1Although we could directly claim Theorem 5.8, it is a bit of overkill.



6.1. FIRST AND SECOND DEGREE SPLINES 73

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0  0.2  0.4  0.6  0.8  1

function
spline interpolant

Figure 6.2: The function f(t) = 4.1 + sin (1/(0.08t+ 0.5)) is shown, along with
the linear spline interpolant, for the knots 0, 0.1, 0.4, 0.6, 0.75, 0.9, 1.0 For some
values of t, the function and its interpolant are very close, while they vary greatly
in the middle of the interval.

In particular, if f ′(t) exists and is bounded by M1 on [ti, ti+1], then

|f(t)− p(t)| ≤ M1

2
(ti+1 − ti) .

Similarly, if f ′′(t) exists and is bounded by M2 on [ti, ti+1], then

|f(t)− p(t)| ≤ M2

8
(ti+1 − ti)2 .

Over a given partition, these become, respectively

|f(t)− p(t)| ≤ M1

2
max
0≤i<n

(ti+1 − ti) ,

|f(t)− p(t)| ≤ M2

8
max
0≤i<n

(ti+1 − ti)2 .
(6.1)

If equally spaced nodes are used, these bounds guarantee that spline in-
terpolants become better as the number of nodes is increased. This contrasts
with polynomial interpolants, which may get worse as the number of nodes is
increased, cf. Example 5.7.

6.1.2 Second Degree Splines

Piecewise quadratic splines, or splines of degree 2, are defined similarly:

Definition 6.4 (Quadratic Splines). A function Q is a quadratic spline on [a, b]
if



74 CHAPTER 6. SPLINE INTERPOLATION

1. The domain of Q is [a, b].
2. Q is continuous on [a, b].
3. Q′ is continuous on (a, b).
4. There is a partition {ti}ni=0 of [a, b] such that on [ti, ti+1], Q is a polynomial

of degree at most 2.

Example 6.5. The following is a quadratic splne:

Q(x) =







−x x ≤ 0,
x2 − x 0 ≤ x ≤ 2,

−x2 + 7x− 8 2 ≤ x.

Unlike linear splines, quadratic splines are not defined entirely by their values
at the knots. We consider why that is. The splineQ(x) is defined by its piecewise
polynomials,

Qi(x) = aix
2 + bix+ ci.

Thus there are 3n parameters to define Q(x).

For each of the n subintervals, the data

t t0 t1 . . . tn
y y0 y1 . . . yn

give two equations regarding Qi(x), namely that Qi(ti) must equal yi and
Qi(ti+1) must equal yi+1. This is 2n equations. The condition on continuity
of Q′ gives a single equation for each of the n − 1 internal nodes. This totals
3n− 1 equations, but 3n unknowns. This system is underdetermined.

Thus some additional user-chosen condition is required to determine the
quadratic spline. One might choose, for example, Q′(a) = 0, or Q′′(a) = 0, or
some other condition.

6.1.3 Computing Second Degree Splines

Suppose the data

t t0 t1 . . . tn
y y0 y1 . . . yn

are given. Let zi = Q′
i(ti), and suppose that the additional condition to define

the quadratic spline is given by specifying z0. We want to be able to compute
the form of Qi(x).

Because Qi(ti) = yi, Q
′
i(ti) = zi, Q

′
i(ti+1) = zi+1, we see that we can define

Qi(x) =
zi+1 − zi

2 (ti+1 − ti)
(x− ti)2 + zi (x− ti) + yi.



6.2. (NATURAL) CUBIC SPLINES 75

Use this at ti+1 :

yi+1 = Qi(ti+1) =
zi+1 − zi

2 (ti+1 − ti)
(ti+1 − ti)2 + zi (ti+1 − ti) + yi,

yi+1 − yi =
zi+1 − zi

2
(ti+1 − ti) + zi (ti+1 − ti) ,

yi+1 − yi =
zi+1 + zi

2
(ti+1 − ti) .

Thus we can determine, from the data alone, zi+1 from zi:

zi+1 = 2
yi+1 − yi
ti+1 − ti

− zi.

6.2 (Natural) Cubic Splines

If you recall the definition of the linear and quadratic splines, probably you can
guess the definition of the spline of degree k:

Definition 6.6 (Splines of Degree k). A function S is a spline of degree k on
[a, b] if

1. The domain of S is [a, b].
2. S, S′, S′′, . . . , S(k−1) are continuous on (a, b).
3. There is a partition {ti}ni=0 of [a, b] such that on [ti, ti+1], S is a polynomial

of degree ≤ k.
You would also expect that a spline of degree k has k−1 “degrees of freedom,”

as we show here. If the partition has n+1 knots, the spline of degree k is defined
by n(k + 1) parameters. The given data

t t0 t1 . . . tn
y y0 y1 . . . yn

provide 2n equations. The continuity of S′, S′′, . . . , S(k−1) at the n− 1 internal
knots gives (k − 1)(n − 1) equations. This is a total of n(k + 1) − (k − 1)
equations. Thus we have k − 1 more unknowns than equations. Thus, barring
some singularity, we can (and must) add k − 1 constraints to uniquely define
the spline. These are the degrees of freedom.

Often k is chosen as 3. This yields cubic splines. We must add 2 extra
constraints to define the spline. The usual choice is to make

S′′(t0) = S′′(tn) = 0.

This yields the natural cubic spline.

6.2.1 Why Natural Cubic Splines?

It turns out that natural cubic splines are a good choice in the sense that they
are the “interpolant of minimal H2 seminorm.” The corollary following this
theorem states this in more easily understandable terms:



76 CHAPTER 6. SPLINE INTERPOLATION

Theorem 6.7. Suppose f has two continuous derivatives, and S is the natural
cubic spline interpolating f at knots a = t0 < t1 < . . . < tn = b. Then

∫ b

a

[S′′(x)]
2
dx ≤

∫ b

a

[f ′′(x)]
2
dx

Proof. We let g(x) = f(x) − S(x). Then g(x) is zero on the (n + 1) knots ti.
Derivatives are linear, meaning that

f ′′(x) = S′′(x) + g′′(x).

Then

∫ b

a

[f ′′(x)]
2
dx =

∫ b

a

[S′′(x)]
2
dx+

∫ b

a

[g′′(x)]
2
dx+

∫ b

a

2S′′(x)g′′(x) dx.

We show that the last integral is zero. Integrating by parts we get

∫ b

a

S′′(x)g′′(x) dx = S′′g′
∣

∣

∣

b

a
−
∫ b

a

S′′′g′ dx = −
∫ b

a

S′′′g′ dx,

because S′′(a) = S′′(b) = 0. Then notice that S is a polynomial of degree ≤ 3
on each interval, thus S′′′(x) is a piecewise constant function, taking value ci on
each interval [ti, ti+1]. Thus

∫ b

a

S′′′g′ dx =

n−1
∑

i=0

∫ b

a

cig
′ dx =

n−1
∑

i=0

cig
∣

∣

∣

ti+1

ti
= 0,

with the last equality holding because g(x) is zero at the knots.

Corollary 6.8. The natural cubic spline is best twice-continuously differentiable
interpolant for a twice-continuously differentiable function, under the measure
given by the theorem.

Proof. Let f be twice-continuously differentiable, and let S be the natural cubic
spline interpolating f(x) at some given nodes {ti}ni=0. Let R(x) be some twice-
continuously differentiable function which also interpolates f(x) at these nodes.
Then S(x) interpolates R(x) at these nodes. Apply the theorem to get

∫ b

a

[S′′(x)]
2
dx ≤

∫ b

a

[R′′(x)]
2
dx

6.2.2 Computing Cubic Splines

First we present an example of computing the natural cubic spline by hand:



6.3. B SPLINES 77

Example Problem 6.9. Construct the natural cubic spline for the following
data:

t −1 0 2
y 3 −1 3

Solution: The natural cubic spline is defined by eight parameters:

S(x) =

{

ax3 + bx2 + cx+ d x ∈ [−1, 0]
ex3 + fx2 + gx+ h x ∈ [0, 2]

We interpolate to find that d = h = −1 and

−a+ b− c− 1 = 3

8e+ 4f + 2g − 1 = 3

We take the derivative of S:

S′(x) =

{

3ax2 + 2bx+ c x ∈ [−1, 0]
3ex2 + 2fx+ g x ∈ [0, 2]

Continuity at the middle node gives c = g. Now take the second derivative of S:

S′′(x) =

{

6ax+ 2b x ∈ [−1, 0]
6ex+ 2f x ∈ [0, 2]

Continuity at the middle node gives b = f. The natural cubic spline condition
gives −6a+2b = 0 and 12e+2f = 0. Solving this by “divide and conquer” gives

S(x) =

{

x3 + 3x2 − 2x− 1 x ∈ [−1, 0]
− 1

2x
3 + 3x2 − 2x− 1 x ∈ [0, 2]

⊣

Finding the constants for the previous example was fairly tedious. And
this is for the case of only three nodes. We would like a method easier than
setting up the 4n equations and unknowns, something akin to the description in
Subsection 6.1.3. The method is rather tedious, so we leave it to the exercises.

6.3 B Splines

The B splines form a basis for spline functions, whence the name. We presuppose
the existence of an infinite number of knots:

. . . < t2 < t1 < t0 < t1 < t2 < . . . ,

with limk→−∞ tk = −∞ and limk→∞ tk =∞.
The B splines of degree 0 are defined as single “blocks”:

B0
i (x) =

{

1 ti ≤ x < ti+1

0 otherwise



78 CHAPTER 6. SPLINE INTERPOLATION

The zero degree B splines are continuous from the right, are nonzero only
on one subinterval [ti, ti+1), sum to 1 everywhere.

We justify the description of B splines as basis splines: If S is a spline of
degree 0 on the given knots and is continuous from the right then

S(x) =
∑

i

S(xi)B
0
i (x).

That is, the basis splines work in the same way that Lagrange Polynomials
worked for polynomial interpolation.

The B splines of degree k are defined recursively:

Bk
i (x) =

(

x− ti
ti+k − ti

)

Bk−1
i (x) +

(

ti+k+1 − x
ti+k+1 − ti+1

)

Bk−1
i+1 (x).

Some B splines are shown in Figure 6.3.
The B splines quickly become unwieldy. We focus on the case k = 1. The B

spline B1
i (x) is

• Piecewise linear.
• Continuous.
• Nonzero only on (ti, ti+2).
• 1 at ti+1.

These B splines are sometimes called hat functions. Imagine wearing a hat
shaped like this! Whatever.

The nice thing about the hat functions is they allow us to use analogy.
Harken back to polynomial interpolation and the Lagrange Functions. The hat
functions play a similar role because

B1
i (tj) = δ(i+1)j =

{

1 (i+ 1) = j
0 (i+ 1) 6= j

Then if we want to interpolate the following data with splines of degree 1:

t t0 t1 . . . tn
y y0 y1 . . . yn

We can immediately set

S(x) =

n
∑

i=0

yiB
1
i−1(x).



6.3. B SPLINES 79

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

(a) Degree 0 B spline

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

(b) Degree 1 B spline

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  1  2  3  4  5  6

B1
0(x)

B1
1(x)
B2

0(x)

(c) Degree 2 B spline, with 2 Degree 1 B splines

Figure 6.3: Some B splines for the knots t0 = 1, t1 = 2.5, t2 = 3.5, t3 = 4 are
shown. In (a), one of the degree 0 B splines; in (b), a degree 1 B spline; in (c),
two of the degree 1 B splines and a degree 2 B spline are shown. The two hat
functions “merge” together to give the quadratic B spline.



80 CHAPTER 6. SPLINE INTERPOLATION

Exercises

(6.1) Is the following function a linear spline on [0, 4]? Why or why not?

S(x) =

{

3x+ 2 : 0 ≤ x < 1

−2x+ 4 : 1 ≤ x ≤ 4

(6.2) Is the following function a linear spline on [0, 2]? Why or why not?

S(x) =

{

x+ 3 : 0 ≤ x < 1

3 : 1 ≤ x ≤ 2

(6.3) Is the following function a linear spline on [0, 4]? Why or why not?

S(x) =

{

x2 + 3 : 0 ≤ x < 3

5x− 6 : 3 ≤ x ≤ 4

(6.4) Find constants, α, β such that the following is a linear spline on [0, 5].

S(x) =











4x− 2 : 0 ≤ x < 1

αx+ β : 1 ≤ x < 3

−2x+ 10 : 3 ≤ x ≤ 5

(6.5) Is the following function a quadratic spline on [0, 4]? Why or why not?

Q(x) =

{

x2 + 3 : 0 ≤ x < 3

5x− 6 : 3 ≤ x ≤ 4

(6.6) Is the following function a quadratic spline on [0, 2]? Why or why not?

Q(x) =

{

x2 + 3x+ 2 : 0 ≤ x < 1

2x2 + x+ 3 : 1 ≤ x ≤ 2

(6.7) Find constants, α, β, γ such that the following is a quadratic spline on
[0, 5].

Q(x) =











1
2x

2 + 2x+ 3
2 : 0 ≤ x < 1

αx2 + βx+ γ : 1 ≤ x < 3

3x2 − 7x+ 12 : 3 ≤ x ≤ 5

(6.8) Find the quadratic spline that interpolates the following data:

t 0 1 4
y 1 −2 1

To resolve the single degree of freedom, assume that Q′(0) = −Q′(4).
Assume your solution takes the form

Q(x) =

{

α1 (x− 1)
2
+ β1 (x− 1)− 2 : 0 ≤ x < 1

α2 (x− 1)2 + β2 (x− 1)− 2 : 1 ≤ x ≤ 4

Find the constants α1, β1, α2, β2.



6.3. B SPLINES 81

(6.9) Find the natural cubic spline that interpolates the data

x 0 1 3
y 4 2 7

It may help to assume your answer has the form

S(x) =

{

Ax3 +Bx2 + Cx+ 4 : 0 ≤ x < 1

D(x− 1)3 + E(x− 1)2 + F (x− 1) + 2 : 1 ≤ x ≤ 3



82 CHAPTER 6. SPLINE INTERPOLATION



Chapter 7

Solving Linear Systems

A number of problems in numerical analysis can be reduced to, or approximated
by, a system of linear equations.

7.1 Gaussian Elimination with Näıve Pivoting

Our goal is the automatic solution of systems of linear equations:

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a21x1 + a22x2 + a23x3 + · · · + a2nxn = b2
a31x1 + a32x2 + a33x3 + · · · + a3nxn = b3

...
...

...
. . .

...
...

an1x1 + an2x2 + an3x3 + · · · + annxn = bn

In these equations, the aij and bi are given real numbers. We also write this
as

Ax = b,

where A is a matrix, whose element in the ith row and jth column is aij , and b

is a column vector, whose ith entry is bi.
This gives the easier way of writing this equation:















a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann





























x1
x2
x3
...
xn















=















b1
b2
b3
...
bn















(7.1)

7.1.1 Elementary Row Operations

You may remember that one way to solve linear equations is by applying ele-
mentary row operations to a given equation of the system. For example, if we

83



84 CHAPTER 7. SOLVING LINEAR SYSTEMS

are trying to solve the given system of equations, they should have the same
solution as the following system:

























a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

κai1 κai2 κai3 · · · κain
...

...
...

. . .
...

an1 an2 an3 · · · ann

















































x1
x2
x3
...
xi
...
xn

























=

























b1
b2
b3
...
κbi
...
bn

























where κ is some given number which is not zero. It suffices to solve this system
of linear equations, as it has the same solution(s) as our original system. Mul-
tiplying a row of the system by a nonzero constant is one of the elementary row
operations.

The second elementary row operation is to replace a row by the sum of that
row and a constant times another. Thus, for example, the following system of
equations has the same solution as the original system:





























a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

a(i−1)1 a(i−1)2 a(i−1)3 · · · a(i−1)n

ai1 + βaj1 ai2 + βaj2 ai3 + βaj3 · · · ain + βajn
...

...
...

. . .
...

an1 an2 an3 · · · ann

























































x1
x2
x3
...

x(i−1)

xi
...
xn





























=





























b1
b2
b3
...

b(i−1)

bi + βbj
...
bn





























We have replaced the ith row by the ith row plus β times the jth row.

The third elementary row operation is to switch rows:















a11 a12 a13 · · · a1n
a31 a32 a33 · · · a3n
a21 a22 a23 · · · a2n
...

...
...

. . .
...

an1 an2 an3 · · · ann





























x1
x2
x3
...
xn















=















b1
b3
b2
...
bn















We have here switched the second and third rows. The purpose of this e.r.o. is
mainly to make things look nice.

Note that none of the e.r.o.’s change the structure of the solution vector x.
For this reason, it is customary to drop the solution vector entirely and to write



7.1. GAUSSIAN ELIMINATION WITH NAÏVE PIVOTING 85

the matrix A and the vector b together in augmented form:















a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

...
...

. . .
...

an1 an2 an3 · · · ann bn















The idea of Gaussian Elimination is to use the elementary row operations to
put a system into upper triangular form then use back substitution. We’ll give
an example here:

Example Problem 7.1. Solve the set of linear equations:

x1 + x2 − x3 = 2

−3x1 − 4x2 + 4x3 = −7
2x1 + 1x2 + 1x3 = 7

Solution: We start by rewriting in the augmented form:





1 1 −1 2
−3 −4 4 −7
2 1 1 7





We add 3 times the first row to the second, and −2 times the first row to the
third to get:





1 1 −1 2
0 −1 1 −1
0 −1 3 3





We now add −1 times the second row to the third row to get:





1 1 −1 2
0 −1 1 −1
0 0 2 4





The matrix is now in upper triangular form: there are no nonzero entries below
the diagonal. This corresponds to the set of equations:

x1 + x2 − x3 = 2

−x2 + x3 = −1
2x3 = 4

We now solve this by back substitution. Because the matrix is in upper triangular
form, we can solve x3 by looking only at the last equation; namely x3 = 2.
However, once x3 is known, the second equation involves only one unknown, x2,
and can be solved only by x2 = 3. Then the first equation has only one unknown,
and is solved by x1 = 1. ⊣



86 CHAPTER 7. SOLVING LINEAR SYSTEMS

All sorts of funny things can happen when you attempt Gaussian Elim-
ination: it may turn out that your system has no solution, or has a single
solution (as above), or an infinite number of solutions. We should expect that
an algorithm for automatic solution of systems of equations should detect these
problems.

7.1.2 Algorithm Terminology

The method outlined above is fine for solving small systems. We should like
to devise an algorithm for doing the same thing which can be applied to large
systems of equations. The algorithm will take the system (in augmented form):















a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

...
...

. . .
...

an1 an2 an3 · · · ann bn















The algorithm then selects the first row as the pivot equation or pivot row, and
the first element of the first row, a11 is the pivot element. The algorithm then
pivots on the pivot element to get the system:















a11 a12 a13 · · · a1n b1
0 a′22 a′23 · · · a′2n b′2
0 a′32 a′33 · · · a′3n b′3
...

...
...

. . .
...

0 a′n2 a′n3 · · · a′nn b′n















Where

a′ij = aij −
(

ai1

a11

)

a1j

b′i = bi −
(

ai1

a11

)

b1







(2 ≤ i ≤ n, 1 ≤ j ≤ n)

Effectively we are carrying out the e.r.o. of replacing the ith row by the ith row

minus
(

ai1

a11

)

times the first row. The quantity
(

ai1

a11

)

is the multiplier for the

ith row.
Hereafter the algorithm will not alter the first row or first column of the

system. Thus, the algorithm could be written recursively. By pivoting on the
second row, the algorithm then generates the system:















a11 a12 a13 · · · a1n b1
0 a′22 a′23 · · · a′2n b′2
0 0 a′′33 · · · a′′3n b′′3
...

...
...

. . .
...

0 0 a′′n3 · · · a′′nn b′′n

















7.1. GAUSSIAN ELIMINATION WITH NAÏVE PIVOTING 87

In this case

a′′ij = a′ij −
(

a′

i2

a′

22

)

a′2j

b′′i = b′i −
(

a′

i2

a′

22

)

b′2







(3 ≤ i ≤ n, 1 ≤ j ≤ n)

7.1.3 Algorithm Problems

The pivoting strategy we examined in this section is called ‘näıve’ because a
real algorithm is a bit more complicated. The algorithm we have outlined is far
too rigid–it always chooses to pivot on the kth row during the kth step. This
would be bad if the pivot element were zero; in this case all the multipliers aik

akk

are not defined.
Bad things can happen if akk is merely small instead of zero. Consider the

following example:

Example 7.2. Solve the system of equations given by the augmented form:
(

−0.0590 0.2372 −0.3528
0.1080 −0.4348 0.6452

)

Note that the exact solution of this system is x1 = 10, x2 = 1. Suppose, how-
ever, that the algorithm uses only 4 significant figures for its calculations. The
algorithm, näıvely, pivots on the first equation. The multiplier for the second
row is

0.1080

−0.0590 ≈ −1.830508...,

which will be rounded to −1.831 by the algorithm.
The second entry in the matrix is replaced by

−0.4348− (−1.831)(0.2372) = −0.4348 + 0.4343 = −0.0005,
where the arithmetic is rounded to four significant figures each time. There is
some serious subtractive cancellation going on here. We have lost three figures
with this subtraction. The errors get worse from here. Similarly, the second
vector entry becomes:

0.6452− (−1.831)(−0.3528) = 0.6452− 0.6460 = −0.0008,
where, again, intermediate steps are rounded to four significant figures, and
again there is subtractive cancelling. This puts the system in the form

(

−0.0590 0.2372 −0.3528
0 −0.0005 −0.0008

)

When the algorithm attempts back substitution, it gets the value

x2 =
−0.0008
−0.0005 = 1.6.

This is a bit off from the actual value of 1. The algorithm now finds

x1 = (−0.3528− 0.2372 · 1.6) /−0.059 = (−0.3528− 0.3795)/−0.059 = (−0.7323)/−0.059 = 12.41,

where each step has rounding to four significant figures. This is also a bit off.



88 CHAPTER 7. SOLVING LINEAR SYSTEMS

7.2 Pivoting Strategies for Gaussian Elimina-

tion

Gaussian Elimination can fail when performed in the wrong order. If the algo-
rithm selects a zero pivot, the multipliers are undefined, which is no good. We
also saw that a pivot small in magnitude can cause failure. As here:

ǫx1 + x2 = 1

x1 + x2 = 2

The näıve algorithm solves this as

x2 =
2− 1

ǫ

1− 1
ǫ

= 1− ǫ

1− ǫ

x1 =
1− x2
ǫ

=
1

1− ǫ

If ǫ is very small, then 1
ǫ is enormous compared to both 1 and 2. With poor

rounding, the algorithm solves x2 as 1. Then it solves x1 = 0. This is nearly
correct for x2, but is an awful approximation for x1. Note that this choice of
x1, x2 satisfies the first equation, but not the second.

Now suppose the algorithm changed the order of the equations, then solved:

x1 + x2 = 2

ǫx1 + x2 = 1

The algorithm solves this as

x2 =
1− 2ǫ

1− ǫ
x1 = 2− x2

There’s no problem with rounding here.
The problem is not the small entry per se: Suppose we use an e.r.o. to scale

the first equation, then use näıve G.E.:

x1 +
1

ǫ
x2 =

1

ǫ
x1 + x2 = 2

This is still solved as

x2 =
2− 1

ǫ

1− 1
ǫ

x1 =
1− x2
ǫ

,

and rounding is still a problem.



7.2. PIVOTING STRATEGIES FOR GAUSSIAN ELIMINATION 89

7.2.1 Scaled Partial Pivoting

The näıve G.E. algorithm uses the rows 1, 2, . . . , n-1 in order as pivot equations.
As shown above, this can cause errors. Better is to pivot first on row ℓ1, then
row ℓ2, etc, until finally pivoting on row ℓn−1, for some permutation {ℓi}ni=1 of
the integers 1, 2, . . . , n. The strategy of scaled partial pivoting is to compute
this permutation so that G.E. works well.

In light of our example, we want to pivot on an element which is not small
compared to other elements in its row. So our algorithm first determines “small-
ness” by calculating a scale, row-wise:

si = max
1≤j≤n

|aij | .

The scales are only computed once.
Then the first pivot, ℓ1, is chosen to be the i such that

|ai,1|
si

is maximized. The algorithm pivots on row ℓ1, producing a bunch of zeros in
the first column. Note that the algorithm should not rearrange the matrix–this
takes too much work.

The second pivot, ℓ2, is chosen to be the i such that

|ai,2|
si

is maximized, but without choosing ℓ2 = ℓ1. The algorithm pivots on row ℓ2,
producing a bunch of zeros in the second column.

In the kth step ℓk is chosen to be the i not among ℓ1, ℓ2, . . . , ℓk−1 such that

|ai,k|
si

is maximized. The algorithm pivots on row ℓk, producing a bunch of zeros in
the kth column.

The slick way to implement this is to first set ℓi = i for i = 1, 2, . . . , n. Then
rearrange this vector in a kind of “bubble sort”: when you find the index that
should be ℓ1, swap them, i.e., find the j such that ℓj should be the first pivot
and switch the values of ℓ1, ℓj .

Then at the kth step, search only those indices in the tail of this vector: i.e.,
only among ℓj for k ≤ j ≤ n, and perform a swap.

7.2.2 An Example

We present an example of using scaled partial pivoting with G.E. It’s hard to
come up with an example where the numbers do not come out as ugly fractions.
We’ll look at a homework question.



90 CHAPTER 7. SOLVING LINEAR SYSTEMS









2 −1 3 7 15
4 4 0 7 11
2 1 1 3 7
6 5 4 17 31









The scales are as follows: s1 = 7, s2 = 7, s3 = 3, s4 = 17.

We pick ℓ1. It should be the index which maximizes |ai1| /si. These values
are:

2

7
,
4

7
,
2

3
,
6

17
.

We pick ℓ1 = 3, and pivot:









0 −2 2 4 8
0 2 −2 1 −3
2 1 1 3 7
0 2 1 8 10









We pick ℓ2. It should not be 3, and should be the index which maximizes
|ai2| /si. These values are:

2

7
,
2

7
,
2

17
.

We have a tie. In this case we pick the second row, i.e., ℓ2 = 2. We pivot:









0 0 0 5 5
0 2 −2 1 −3
2 1 1 3 7
0 0 3 7 13









The matrix is in permuted upper triangular form. We could proceed, but
would get a zero multiplier, and no changes would occur.

If we did proceed we would have ℓ3 = 4. Then ℓ4 = 1. Our row permutation
is 3, 2, 4, 1. When we do back substitution, we work in this order reversed on
the rows, solving x4, then x3, x2, x1.

We get x4 = 1, so

x3 =
1

3
(13− 7 ∗ 1) = 2

x2 =
1

2
(−3− 1 ∗ 1 + 2 ∗ 2) = 0

x1 =
1

2
(7− 3 ∗ 1− 1 ∗ 2− 1 ∗ 0) = 1

7.2.3 Another Example and A Real Algorithm

Sometimes we want to solve

Ax = b



7.2. PIVOTING STRATEGIES FOR GAUSSIAN ELIMINATION 91

for a number of different vectors b. It turns out we can run G.E. on the matrix
A alone and come up with all the multipliers, which can then be used multiple
times on different vectors b. We illustrate with an example:

M0 =









1 2 4 1
4 2 1 2
2 1 2 3
1 3 2 1









, ℓ =









1
2
3
4









.

The scale vector is s =
[

4 4 3 3
]⊤

.
Our scale choices are 1

4 ,
4
4 ,

2
3 ,

1
3 . We choose ℓ1 = 2, and swap ℓ1, ℓ2. In the

places where there would be zeros in the real matrix, we will put the multipliers.
We will illustrate them here boxed:

M1 =























1

4
3
2

15
4

1
2

4 2 1 2

1

2
0 3

2 2

1

4
5
2

7
4

1
2























, ℓ =









2
1
3
4









.

Our scale choices are 3
8 ,

0
3 ,

5
6 . We choose ℓ2 = 4, and so swap ℓ2, ℓ4:

M2 =























1

4

3

5
27
10

1
5

4 2 1 2

1

2
0 3

2 2

1

4
5
2

7
4

1
2























, ℓ =









2
4
3
1









.

Our scale choices are 27
40 ,

1
2 . We choose ℓ3 = 1, and so swap ℓ3, ℓ4:

M3 =























1

4

3

5
27
10

1
5

4 2 1 2

1

2
0

5

9
17
9

1

4
5
2

7
4

1
2























, ℓ =









2
4
1
3









.

Now suppose we had to solve the linear system for b =
[

−1 8 2 1
]⊤

.
We scale b by the multipliers in order: ℓ1 = 2, so, we sweep through the

first column of M3, picking off the boxed numbers (your computer doesn’t really



92 CHAPTER 7. SOLVING LINEAR SYSTEMS

have boxed variables), and scaling b appropriately:









−1
8
2
1









⇒









−3
8
−2
−1









This continues:








−3
8
−2
−1









⇒









− 12
5
8
−2
−1









⇒









− 12
5
8
− 2

3
−1









We then perform a permuted backwards substitution on the augmented sys-
tem









0 0 27
10

1
5 − 12

5
4 2 1 2 8
0 0 0 17

9 − 2
3

0 5
2

7
4

1
2 −1









This proceeds as

x4 =
−2
3

9

17
=
−6
17

x3 =
10

27

(

−12

5
− 1

5

−6
17

)

= . . .

x2 =
2

5

(

−1− 1

2

−6
17
− 7

4
x3

)

= . . .

x1 =
1

4

(

8− 2
−6
17
− x3 − 2x2

)

= . . .

Fill in your own values here.

7.3 LU Factorization

We examined G.E. to solve the system

Ax = b,

where A is a matrix:

A =















a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann















.



7.3. LU FACTORIZATION 93

We want to show that G.E. actually factors A into lower and upper triangular
parts, that is A = LU, where

L =















1 0 0 · · · 0
ℓ21 1 0 · · · 0
ℓ31 ℓ32 1 · · · 0
...

...
...

. . .
...

ℓn1 ℓn2 ℓn3 · · · 1















, U =















u11 u12 u13 · · · u1n
0 u22 u23 · · · u2n
0 0 u33 · · · u3n
...

...
...

. . .
...

0 0 0 · · · unn















.

We call this a LU Factorization of A.

7.3.1 An Example

We consider solution of the following augmented form:









2 1 1 3 7
4 4 0 7 11
6 5 4 17 31
2 −1 0 7 15









(7.2)

The näıve G.E. reduces this to








2 1 1 3 7
0 2 −2 1 −3
0 0 3 7 13
0 0 0 12 18









We are going to run the näıve G.E., and see how it is a LU Factorization. Since
this is the näıve version, we first pivot on the first row. Our multipliers are
2, 3, 1. We pivot to get









2 1 1 3 7
0 2 −2 1 −3
0 2 1 8 10
0 −2 −1 4 8









Careful inspection shows that we’ve merely multiplied A and b by a lower tri-
angular matrix M1:

M1 =









1 0 0 0
−2 1 0 0
−3 0 1 0
−1 0 0 1









The entries in the first column are the negative e.r.o. multipliers for each row.
Thus after the first pivot, it is like we are solving the system

M1Ax = M1b.



94 CHAPTER 7. SOLVING LINEAR SYSTEMS

We pivot on the second row to get:









2 1 1 3 7
0 2 −2 1 −3
0 0 3 7 13
0 0 −3 5 5









The multipliers are 1,−1. We can view this pivot as a multiplication by M2,
with

M2 =









1 0 0 0
0 1 0 0
0 −1 1 0
0 1 0 1









We are now solving

M2M1Ax = M2M1b.

We pivot on the third row, with a multiplier of −1. Thus we get









2 1 1 3 7
0 2 −2 1 −3
0 0 3 7 13
0 0 0 12 18









We have multiplied by M3 :

M3 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1









We are now solving

M3M2M1Ax = M3M2M1b.

But we have an upper triangular form, that is, if we let

U =









2 1 1 3
0 2 −2 1
0 0 3 7
0 0 0 12









Then we have

M3M2M1A = U,

A = (M3M2M1)
−1

U,

A = M1
−1

M2
−1

M3
−1

U,

A = LU.



7.3. LU FACTORIZATION 95

We are hoping that L is indeed lower triangular, and has ones on the diagonal. It
turns out that the inverse of each Mi matrix has a nice form (See Exercise (7.6)).
We write them here:

L =









1 0 0 0
2 1 0 0
3 0 1 0
1 0 0 1

















1 0 0 0
0 1 0 0
0 1 1 0
0 −1 0 1

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1









=









1 0 0 0
2 1 0 0
3 1 1 0
1 −1 −1 1









This is really crazy: the matrix L looks to be composed of ones on the diagonal
and multipliers under the diagonal.

Now we check to see if we made any mistakes:

LU =









1 0 0 0
2 1 0 0
3 1 1 0
1 −1 −1 1

















2 1 1 3
0 2 −2 1
0 0 3 7
0 0 0 12









=









2 1 1 3
4 4 0 7
6 5 4 17
2 −1 0 7









= A.

7.3.2 Using LU Factorizations

We see that the G.E. algorithm can be used to actually calculate the LU fac-
torization. We will look at this in more detail in another example. We now
examine how we can use the LU factorization to solve the equation

Ax = b,

Since we have A = LU, we first solve

Lz = b,

then solve
Ux = z.

Since L is lower triangular, we can solve for z with a forward substitution.
Similarly, since U is upper triangular, we can solve for x with a back substitution.
We drag out the previous example (which we never got around to solving):









2 1 1 3 7
4 4 0 7 11
6 5 4 17 31
2 −1 0 7 15











96 CHAPTER 7. SOLVING LINEAR SYSTEMS

We had found the LU factorization of A as

A =









1 0 0 0
2 1 0 0
3 1 1 0
1 −1 −1 1

















2 1 1 3
0 2 −2 1
0 0 3 7
0 0 0 12









So we solve








1 0 0 0
2 1 0 0
3 1 1 0
1 −1 −1 1









z =









7
11
31
15









We get

z =









7
−3
13
18









Now we solve








2 1 1 3
0 2 −2 1
0 0 3 7
0 0 0 12









x =









7
−3
13
18









We get the ugly solution

z =









37
24
−17
12
5
6
3
2









7.3.3 Some Theory

We aren’t doing much proving here. The following theorem has an ugly proof
in the Cheney & Kincaid [?].

Theorem 7.3. If A is an n× n matrix, and näıve Gaussian Elimination does
not encounter a zero pivot, then the algorithm generates a LU factorization of
A, where L is the lower triangular part of the output matrix, and U is the upper
triangular part.

This theorem relies on us using the fancy version of G.E., which saves the
multipliers in the spots where there should be zeros. If correctly implemented,
then, L is the lower triangular part but with ones put on the diagonal.

This theorem is proved in Cheney & Kincaid [?]. This appears to me to be
a case of something which can be better illustrated with an example or two and
some informal investigation. The proof is an unillustrating index-chase–read it
at your own risk.



7.4. ITERATIVE SOLUTIONS 97

7.3.4 Computing Inverses

We consider finding the inverse of A. Since

AA−1 = I,

then the jth column of the inverse A−1 solves the equation

Ax = ej ,

where ej is the column matrix of all zeros, but with a one in the jth position.
Thus we can find the inverse of A by running n linear solves. Obviously we

are only going to run G.E. once, to put the matrix in LU form, then run n solves
using forward and backward substitutions.

7.4 Iterative Solutions

Recall we are trying to solve
Ax = b.

We examine the computational cost of Gaussian Elimination to motivate the
search for an alternative algorithm.

7.4.1 An Operation Count for Gaussian Elimination

We consider the number of floating point operations (“flops”) required to solve
the system Ax = b. Gaussian Elimnation first uses row operations to transform
the problem into an equivalent problem of the form Ux = b′, where U is upper
triangular. Then back substitution is used to solve for x.

First we look at how many floating point operations are required to reduce















a11 a12 a13 · · · a1n b1
a21 a22 a23 · · · a2n b2
a31 a32 a33 · · · a3n b3
...

...
...

. . .
...

an1 an2 an3 · · · ann bn















to














a11 a12 a13 · · · a1n b1
0 a′22 a′23 · · · a′2n b′2
0 a′32 a′33 · · · a′3n b′3
...

...
...

. . .
...

0 a′n2 a′n3 · · · a′nn b′n















First a multiplier is computed for each row. Then in each row the algorithm
performs n multiplies and n adds. This gives a total of (n − 1) + (n − 1)n
multiplies (counting in the computing of the multiplier in each of the (n − 1)



98 CHAPTER 7. SOLVING LINEAR SYSTEMS

rows) and (n− 1)n adds. In total this is 2n2 − n− 1 floating point operations
to do a single pivot on the n by n system.

Then this has to be done recursively on the lower right subsystem, which is
an (n− 1) by (n− 1) system. This requires 2(n− 1)2 − (n− 1)− 1 operations.
Then this has to be done on the next subsystem, requiring 2(n−2)2−(n−2)−1
operations, and so on.

In total, then, we use In total floating point operations, with

In = 2

n
∑

j=1

j2 −
n
∑

j=1

j −
n
∑

j=1

1.

Recalling that

n
∑

j=1

j2 =
1

6
(n)(n+ 1)(2n+ 1), and

n
∑

j=1

j =
1

2
(n)(n+ 1),

We find that

In =
1

6
(4n− 1)n(n+ 1)− n ≈ 2

3
n3.

Now consider the costs of back substitution. To solve














a11 · · · a1,n−2 a1,n−1 a1n b1
...

. . .
...

...
...

...
0 · · · an−2,n−2 an−2,n−1 an−2,n bn−2

0 · · · 0 an−1,n−1 an−1,n bn−1

0 · · · 0 0 ann bn















for xn requires only a single division. Then to solve for xn−1 we compute

xn−1 =
1

an−1,n−1
[bn−1 − an−1,nxn] ,

and requires 3 flops. Similarly, solving for xn−2 requires 5 flops. Thus in total
back substitution requires Bn total floating point operations with

Bn =
n
∑

j=1

2j − 1 = n(n− 1)− n = n(n− 2) ≈ n2

7.4.2 Dividing by Multiplying

We saw that Gaussian Elimination requires around 2
3n

3 operations just to find
the LU factorization, then about n2 operations to solve the system, when A is
n× n. When n is large, this may take too long to be practical. Additionally, if
A is sparse (has few nonzero elements per row), we would like the complexity of
our computations to scale with the sparsity of A. Thus we look for an alternative
algorithm.



7.4. ITERATIVE SOLUTIONS 99

First we consider the simplest case, n = 1. Suppose we are to solve the
equation

Ax = b.

for scalars A, b. We solve this by

x =
1

A
b =

1

ωA
ωb =

1

1− (1− ωA)ωb =
1

1− rωb,

where ω 6= 0 is some real number chosen to “weight” the problem appropriately,
and r = 1 − ωA. Now suppose that ω is chosen such that |r| < 1. This can be
done so long as A 6= 0, which would have been a problem anyway. Now use the
geometric expansion:

1

1− r = 1 + r + r2 + r3 + . . .

Because of the assumption |r| < 1, the terms rn converge to zero as n → ∞.
This gives the approximate solution to our one dimensional problem as

x ≈
[

1 + r + r2 + r3 + . . .+ rk
]

ωb

= ωb+
[

r + r2 + r3 + . . .+ rk
]

ωb

= ωb+ r
[

1 + r + r2 + . . .+ rk−1
]

ωb

This suggests an iterative approach to solving Ax = b. First let x(0) = ωb, then
let

x(k) = ωb+ rx(k−1).

The iterates x(k) will converge to the solution of Ax = b if |r| < 1.
You should now convince yourself that because rn → 0, that the choice of the

initial iterate x(0) was immaterial, i.e., that under any choice of initial iterate
convergence is guaranteed.

We now translate this scalar result into the vector case. The algorithm
proceeds as follows: first fix some initial estimate of the solution, x(0). A
good choice might be ωb, but this is not necessary. Then calculate successive
approximations to the actual solution by updates of the form

x(k) = ωb+ (I− ωA)x(k−1).

It turns out that we can consider a slightly more general form of the algo-
rithm, one in which successive iterates are defined implicitly. That is we consider
iterates of the form

Qx(k+1) = (Q− ωA)x(k) + ωb, (7.3)

for some matrix Q, and some scaling factor ω. Note that this update relies on
vector additions and possibly by premultiplication of a vector by A or Q. In
the case where these two matrices are sparse, such an update can be relatively
cheap.



100 CHAPTER 7. SOLVING LINEAR SYSTEMS

Now suppose that as k → ∞, x(k) converges to some vector x∗, which is a
fixed point of the iteration. Then

Qx∗ = (Q− ωA)x∗ + ωb,

Qx∗ = Qx∗ − ωAx∗ + ωb,

ωAx∗ = ωb,

Ax∗ = b.

We have some freedom in choosing Q, but there are two considerations we
should keep in mind:

1. Choice of Q affects convergence and speed of convergence of the method.
In particular, we want Q to be similar to A.

2. Choice of Q affects ease of computing the update. That is, given

z = (Q− A)x(k) + b,

we should pick Q such that the equation

Qx(k+1) = z

is easy to solve exactly.
These two goals conflict with each other. At one end of the spectrum is the
so-called “impossible iteration,” at the other is the Richardsons.

7.4.3 Impossible Iteration

I made up the term “impossible iteration.” But consider the method which
takes Q to be A. This seems to be the best choice for satisfying the first goal.
Letting ω = 1, our method becomes

Ax(k+1) = (A− A)x(k) + b = b.

This method should clearly converge in one step. However, the second goal is
totally ignored. Indeed, we are considering iterative methods because we cannot
easily solve this linear equation in the first place.

7.4.4 Richardson Iteration

At the other end of the spectrum is the Richardson Iteration, which chooses Q
to be the identity matrix. Solving the system

Qx(k+1) = z

is trivial: we just have x(k+1) = z.

Example Problem 7.4. Use Richardson Iteration with ω = 1 on the system

A =





6 1 1
2 4 0
1 2 6



 , b =





12
0
6



 .



7.4. ITERATIVE SOLUTIONS 101

Solution: We let

Q =





1 0 0
0 1 0
0 0 1



 , (Q− A) =





−5 −1 −1
−2 −3 0
−1 −2 −5



 .

We start with an arbitrary x(0), say x(0) = [2 2 2]⊤ .We get x(1) = [−2 − 10 − 10]⊤ ,

and x(2) = [42 34 78]⊤ .

Note the real solution is x = [2 − 1 1]
⊤
. The Richardson Iteration does not

appear to converge for this example, unfortunately. ⊣
Example Problem 7.5. Apply Richardson Iteration with ω = 1/6 on the
previous system. Solution: Our iteration becomes

x(k+1) =





0 −1/6 −1/6
−1/3 1/3 0
−1/6 −1/3 0



x(k) +





2
0
1



 .

We start with the same x(0) as previously, x(0) = [2 2 2]
⊤
. We get x(1) =

[4/3 0 0]
⊤
, x(2) = [2 − 4/9 7/9]

⊤
, and finally x(12) = [2 − 0.99998 0.99998]

⊤
.

Thus, the choice of ω has some affect on convergence. ⊣
We can rethink the Richardson Iteration as

x(k+1) = (I− ωA)x(k) + ωb = x(k) + ω
(

b− Ax(k)
)

.

Thus at each step we are adding some scaled version of the residual, defined as
b− Ax(k), to the iterate.

7.4.5 Jacobi Iteration

The Jacobi Iteration chooses Q to be the matrix consisting of the diagonal of
A. This is more similar to A than the identity matrix, but nearly as simple to
invert.

Example Problem 7.6. Use Jacobi Iteration, with ω = 1, to solve the system

A =





6 1 1
2 4 0
1 2 6



 , b =





12
0
6



 .

Solution: We let

Q =





6 0 0
0 4 0
0 0 6



 , (Q− A) =





0 −1 −1
−2 0 0
−1 −2 0



 , Q−1 =





1
6 0 0
0 1

4 0
0 0 1

6



 .

We start with an arbitrary x(0), say x(0) = [2 2 2]⊤ . We get x(1) =
[

4
3 − 1 0

]⊤
.

Then x(2) =
[

13
6 − 2

3
10
9

]⊤
. Continuing, we find that x(5) ≈ [1.987 − 1.019 0.981]

⊤
.

Note the real solution is x = [2 − 1 1]⊤ . ⊣



102 CHAPTER 7. SOLVING LINEAR SYSTEMS

There is an alternative way to describe the Jacobi Iteration for ω = 1. By
considering the update elementwise, we see that the operation can be described
by

x
(k+1)
j =

1

ajj



bj −
n
∑

i=1,i6=j

ajix
(k)
i



 .

Thus an update takes less than 2n2 operations. In fact, if A is sparse, with less
than k nonzero entries per row, the update should take less than 2nk operations.

7.4.6 Gauss Seidel Iteration

The Gauss Seidel Iteration chooses Q to be lower triangular part of A, including
the diagonal. In this case solving the system

Qx(k+1) = z

is performed by forward substitution. Here the Q is more like A than for Jacobi
Iteration, but involves more work for inverting.

Example Problem 7.7. Use Gauss Seidel Iteration to again solve for

A =





6 1 1
2 4 0
1 2 6



 , b =





12
0
6



 .

Solution: We let

Q =





6 0 0
2 4 0
1 2 6



 , (Q− A) =





0 −1 −1
0 0 0
0 0 0



 .

We start with an arbitrary x(0), say x(0) = [2 2 2]⊤ . We get x(1) =
[

4
3 − 2

3 1
]⊤
.

Then x(2) =
[

35
18 − 35

36 1
]⊤
.

Already this is fairly close to the actual solution x = [2 − 1 1]⊤ . ⊣

Just as with Jacobi Iteration, there is an easier way to describe the Gauss
Seidel Iteration. In this case we will keep a single vector x and overwrite it,
element by element. Thus for j = 1, 2, . . . , n, we set

xj ←
1

ajj



bj −
n
∑

i=1,i6=j

ajixi



 .

This looks exactly like the Jacobi update. However, in the sum on the right
there are some “old” values of xi and some “new” values; the new values are
those xi for which i < j.

Again this takes less than 2n2 operations. Or less than 2nk if A is sufficiently
sparse.



7.4. ITERATIVE SOLUTIONS 103

An alteration of the Gauss Seidel Iteration is to make successive “sweeps”
of this redefinition, one for j = 1, 2, . . . , n, the next for j = n, n − 1, . . . , 2, 1.
This amounts to running Gauss Seidel once with Q the lower triangular part of
A, then running it with Q the upper triangular part. This iterative method is
known as “red-black Gauss Seidel.”

7.4.7 Error Analysis

Suppose that x is the solution to equation 7.4. Define the error vector:

e(k) = x(k) − x.

Now notice that

x(k+1) = Q
−1 (Q− ωA)x(k) + Q

−1ωb,

x(k+1) = Q−1Qx(k) − ωQ−1Ax(k) + ωQ−1Ax,

x(k+1) = x(k) − ωQ−1A

(

x(k) − x
)

,

x(k+1) − x = x(k) − x− ωQ−1
A

(

x(k) − x
)

,

e(k+1) = e(k) − ωQ−1
Ae(k),

e(k+1) =
(

I− ωQ−1
A
)

e(k).

Reusing this relation we find that

e(k) =
(

I− ωQ−1A
)

e(k−1),

=
(

I− ωQ−1A
)2

e(k−2),

=
(

I− ωQ−1
A
)k

e(0).

We want to ensure that e(k+1) is “smaller” than e(k). To do this we recall
matrix and vector norms from Subsection ??.

∥

∥

∥e
(k)
∥

∥

∥

2
=
∥

∥

∥

(

I− ωQ−1A
)k

e(0)
∥

∥

∥

2
≤
∥

∥I− ωQ−1A
∥

∥

k

2

∥

∥

∥e
(0)
∥

∥

∥

2
.

(See Example Problem ??.)
Thus our iteration converges (e(k) goes to the zero vector, i.e., x(k) → x) if

∥

∥I− ωQ−1A
∥

∥

2
< 1.

This gives the theorem:

Theorem 7.8. An iterative solution scheme converges for any starting x(0) if
and only if all eigenvalues of I − ωQ−1A are less than 1 in absolute value, i.e.,
if and only if

∥

∥I− ωQ−1A
∥

∥

2
< 1



104 CHAPTER 7. SOLVING LINEAR SYSTEMS

Another way of saying this is “the spectral radius of I− ωQ−1A is less than
1.”

In fact, the speed of convergence is decided by the spectral radius of the
matrix–convergence is faster for smaller values. Recall our introduction to iter-
ative methods in the scalar case, where the result relied on ω being chosen such
that |1− ωA| < 1. You should now think about how eigenvalues generalize the
absolute value of a scalar, and how this relates to the norm of matrices.

Let y be an eigenvector for Q−1A, with corresponding eigenvalue λ. Then

(

I− ωQ−1A
)

y = y − ωQ−1Ay = y − ωλy = (1− ωλ)y .

This relation may allow us to pick the optimal ω for given A,Q. It can also
show us that sometimes no choice of ω will give convergence of the method.
There are a number of different related results that show when various methods
will work for certain choices of ω. We leave these to the exercises.

Example Problem 7.9. Find conditions on ω which guarantee convergence of
Richardson’s Iteration for finding approximate iterative solutions to the system
Ax = b, where

A =





6 1 1
2 4 0
1 2 6



 , b =





12
0
6



 .

Solution: By Theorem 7.8, with Q the identity matrix, we have convergence if
and only if

‖I− ωA‖2 < 1

We now use the fact that “eigenvalues commute with polynomials;” that is if
f(x) is a polynomial and λ is an eigenvalue of a matrix A, then f(λ) is an
eigenvalue of the matrix f(A). In this case the polynomial we consider is f(x) =
x0 − ωx1. The eigenvalues of A are approximately 7.7321, 4.2679, and 4. Thus
the eigenvalues of I− ωA are approximately

1− 7.7321ω, 1− 4.2679ω, 1− 4ω.

With some work it can be shown that all three of these values will be less than
one in absolute value if and only if

0 < ω <
3

7.7321
≈ 0.388

(See also Exercise (7.10).)

Compare this to the results of Example Problem 7.4, where for this system,
ω = 1 apparently did not lead to convergence, while for Example Problem 7.5,
with ω = 1/6, convergence was observed.

⊣



7.4. ITERATIVE SOLUTIONS 105

7.4.8 A Free Lunch?

The analysis leading to Theorem 7.8 leads to an interesting possible variant
of the iterative scheme. For simplicity we will only consider an alteration of
Richardson’s Iteration. In the altered algorithm we presuppose the existence,
via some oracle, of a sequence of weightings, ωi, which we use in each iterative
update. Thus our algorithm becomes:

1. Select some initial iterate x(0).
2. Given iterate x(k−1), define

x(k) = (I− ωkA)x
(k−1) + ωkb.

Following the analysis for Theorem 7.8, it can be shown that

e(k) = (I− ωkA) e
(k−1)

where, again, e(k) = x(k) − x, with x the actual solution to the linear system.
Expanding e(k−1) similarly gives

Remember that we want e(k) to be small in magnitude, or, better yet, to be
zero. One way to guarantee that e(k) is zero, regardless of the choice of e(0) it
to somehow ensure that the matrix

B =

k
∏

i=1

I− ωiA

has all zero eigenvalues.
We again make use of the fact that eigenvalues “commute” with polynomials

to claim that if λj is an eigenvalue of A, then

k
∏

i=1

1− ωiλj

is an eigenvalue of B. This eigenvalue is zero if one of the ωi for 1 ≤ i ≤ k is
1/λj. This suggests how we are to pick the weightings: let them be the inverses
of the eigenvalues of A.

In fact, if A has a small number of distinct eigenvalues, say m eigenval-
ues, then convergence to the exact solution could be guaranteed after only m
iterations, regardless of the size of the matrix.

As you may have guessed from the title of this subsection, this is not exactly
a practical algorithm. The problem is that it is not simple to find, for a given
arbitrary matrix A, one, some, or all its eigenvalues. This problem is of sufficient
complexity to outweigh any savings to be gotten from our “free lunch” algorithm.

However, in some limited situations this algorithm might be practical if the
eigenvalues of A are known a priori .



106 CHAPTER 7. SOLVING LINEAR SYSTEMS

Exercises

(7.1) Find the LU decomposition of the following matrices, using näıve Gaussian

Elimination (a)





3 −1 −2
9 −1 −4
−6 10 13



 (b)





8 24 16
1 12 11
4 13 19



 (c)





−3 6 0
1 −2 0
−4 5 −8





(7.2) Perform back substitution to solve the equation








1 3 5 3
0 2 4 3
0 0 2 1
0 0 0 2









x =









−1
−1
1
2









(7.3) Perform Näıve Gaussian Elimination to prove Cramer’s rule for the 2D
case. That is, prove that the solution to

[

a b
c d

] [

x
y

]

=

[

f
g

]

is given by

y =

det

[

a f
c g

]

det

[

a b
c d

] and x =

det

[

f b
g d

]

det

[

a b
c d

]

(7.4) Implement Cramer’s rule to solve a pair of linear equations in 2 variables.
Your m-file should have header line like:
function x = cramer2(A,b)

where A is a 2×2 matrix, and b and x are 2×1 vectors. Your code should
find the x such that Ax = b. (See Exercise (7.3))
Test your code on the following (augmented) systems:

(a)

(

3 −2 1
4 −3 −1

)

(b)

(

1.24 −3.48 1
−0.744 2.088 2

)

(c)

(

1.24 −3.48 1
−0.744 2.088 −0.6

)

(d)

(

−0.0590 0.2372 −0.3528
0.1080 −0.4348 0.6452

)

(7.5) Given two lines parametrized by f(t) = at+b, and g(s) = cs+d, set up a
linear 2× 2 system of equations to find the t, s at the point of intersection
of the two lines. If you were going to write a program to detect the
intersection of two lines, how would you detect whether they are parallel?
How is this related to the form of the solution to a system of two linear
equations? (See Exercise (7.3))

(7.6) Prove that the inverse of the matrix














1 0 0 · · · 0
a2 1 0 · · · 0
a3 0 1 · · · 0
...

...
...

. . .
...

an 0 0 · · · 1

















7.4. ITERATIVE SOLUTIONS 107

is the matrix














1 0 0 · · · 0
−a2 1 0 · · · 0
−a3 0 1 · · · 0
...

...
...

. . .
...

−an 0 0 · · · 1















(Hint: Multiply them together.)
(7.7) Under the strategy of scaled partial pivoting, which row of the following

matrix will be the first pivot row?













10 17 −10 0.1 0.9
−3 3 −3 0.3 −4
0.3 0.1 0.01 −1 0.5
2 3 4 −3 5
10 100 1 0.1 0













(7.8) Let A be a symmetric positive definite n×n matrix with n distinct eigen-
values. Letting y(0) = b/ ‖b‖2 , consider the iteration

y(k+1) =
Ay(k)

∥

∥Ay(k)
∥

∥

2

.

(a) What is
∥

∥y(k)
∥

∥

2
?

(b) Show that y(k) = Akb/
∥

∥Akb
∥

∥

2
.

(c) Show that as k →∞, y(k) converges to the (normalized) eigenvector
associated with the largest eigenvalue of A.

(7.9) Consider the equation





1 3 5
−2 2 4
4 −3 −4



x =





−5
−6
10





Letting x(0) = [1 1 0]⊤ , find the iterate x(1) by one step of Richardson’s
Method. And by one step of Jacobi Iteration. And by Gauss Seidel.

(7.10) Let A be a symmetric n×n matrix with eigenvalues in the interval [α, β],
with 0 < α ≤ β, and α+ β 6= 0. Consider Richardson’s Iteration

x(k+1) = (I− ωA)x(k) + ωb.

Recall that e(k+1) = (I− ωA) e(k).
(a) Show that the eigenvalues of I−ωA are in the interval [1− ωβ, 1− ωα].
(b) Prove that

max {|λ| : 1− ωβ ≤ λ ≤ 1− ωα}
is minimized when we choose ω such that 1 − ωβ = − (1− ωα) .
(Hint: It may help to look at the graph of something versus ω.)



108 CHAPTER 7. SOLVING LINEAR SYSTEMS

(c) Show that this relationship is satisfied by ω = 2/ (α+ β).
(d) For this choice of ω show that the spectral radius of I− ωA is

|α− β|
|α+ β| .

(e) Show that when 0 < α, this quantity is always smaller than 1.
(f) Prove that if A is positive definite, then there is an ω such that

Richardson’s Iteration with this ω will converge for any choice of
x(0).

(g) For which matrix do you expect faster convergence of Richardson’s
Iteration: A1 with eigenvalues in [10, 20] or A2 with eigenvalues in
[1010, 1020]? Why?

(7.11) Implement Richardson’s Iteration to solve the system Ax = b. Your m-
file should have header line like:
function xk = richardsons(A,b,x0,w,k)

Your code should return x(k) based on the iteration

x(j+1) = x(j) − ω
(

Ax(j) − b
)

.

Let w take the place of ω, and let x0 be the initial iterate x(0). Test
your code for A, b for which you know the actual solution to the problem.
(Hint: Start with A and the solution x and generate b.) Test your code
on the following matrices:
• Let A be the Hilbert Matrix .
Try different values of ω, including ω = 1.
• Let A be a Toeplitz matrix of the form:

A =















−2 1 0 · · · 0
1 −2 1 · · · 0
0 1 −2 · · · 0
...

...
...

. . .
...

0 0 0 · · · −2















Try different values of ω, including ω = −1/2.
(7.12) Let A be a nonsingular n× n matrix. We wish to solve Ax = b. Let x(0)

be some starting vector, let Dk be span
{

r(0),Ar(0), . . . ,Akr(0)
}

, and let
Pk be the set of polynomials, p(x) of degree k with p(0) = 1.
Consider the following iterative method: Let x(k+1) be the x that solves

min
x∈x(0)+Dk

‖b− Ax‖2 .

Let r(k) = b− Ax(k).
(a) Show that if x ∈ x(0)+Dk, then b−Ax = p(A)r(0) for some p ∈ Pk.
(b) Prove that, conversely, for any p ∈ Pk there is some x ∈ x(0) + Dk,

such that b− Ax = p(A)r(0).



7.4. ITERATIVE SOLUTIONS 109

(c) Argue that
∥

∥

∥r
(k+1)

∥

∥

∥

2
= min

p∈Pk

∥

∥

∥p(A)r(0)
∥

∥

∥

2
.

(d) Prove that this iteration converges in at most n steps. (Hint: Ar-
gue for the existence of a polynomial in Pn that vanishes at all the
eigenvalues of A. Use this polynomial to show that

∥

∥r(n)
∥

∥

2
≤ 0.)



110 CHAPTER 7. SOLVING LINEAR SYSTEMS



Chapter 8

Least Squares

8.1 Least Squares

Least squares is a general class of methods for fitting observed data to a theo-
retical model function. In the general setting we are given a set of data

x x0 x1 . . . xn
y y0 y1 . . . yn

and some class of functions, F . The goal then is to find the “best” f ∈ F to
fit the data to y = f(x). Usually the class of functions F will be determined
by some small number of parameters; the number of parameters will be smaller
(usually much smaller) than the number of data points. The theory here will be
concerned with defining “best,” and examining methods for finding the “best”
function to fit the data.

8.1.1 The Definition of Ordinary Least Squares

First we consider the data to be two vectors of length n+ 1. That is we let

x = [x0 x1 . . . xn]
⊤ , and y = [y0 y1 . . . yn]

⊤ .

The error, or residual, of a given function with respect to this data is the vector
r = y − f(x). That is

r = [r0 r1 . . . rn]
⊤
, where ri = yi − f(xi).

Our goal is to find f ∈ F such that r is reasonably small. We measure the
size of a vector by the use of norms, which were explored in Subsection ??. The
most useful norms are the ℓp norms. For a given p with 0 < p <∞, the ℓp norm
of r is defined as

‖r‖p =

(

n
∑

i=0

rpi

)1/p

For the purposes of approximation, the easiest norm to use is the ℓ2 norm:

111



112 CHAPTER 8. LEAST SQUARES

Definition 8.1.1 ((Ordinary) Least Squares Best Approximant). The least-
squares best approximant to a set of data, x, y from a class of functions, F , is
the function f∗ ∈ F that minimizes the ℓ2 norm of the error. That is, if f∗ is
the least squares best approximant, then

‖y − f∗(x)‖2 = min
f∈F
‖y − f(x)‖2

We will generally assume uniqueness of the minimum. This method is sometimes
called the ordinary least squares method. It assumes there is no error in the
measurement of the data x, and usually admits a relatively straightforward
solution.

8.1.2 Linear Least Squares

We illustrate this definition using the class of linear functions as an example, as
this case is reasonably simple. We are assuming

F = {f(x) = ax+ b | a, b ∈ R } .

We can now think of our job as drawing the “best” line through the data.
By Definition 8.1.1, we want to find the function f(x) = ax+b that minimizes

(

n
∑

i=0

[yi − f(xi)]2
)1/2

.

This is a minimization problem over two variables, x and y. As you may recall
from calculus class, it suffices to minimize the sum rather than its square root.
That is, it suffices to minimize

n
∑

i=0

[axi + b− yi]2.

We can illustrate this approach in Python easily enough.

In[]:

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

from scipy.optimize import minimize

from numpy.random import seed, randn

seed(1)

xs = np.array(list(range(5)))

ys = [2*x+1 + randn()/2 for x in xs]

def squares(ab):

a = ab[0]



8.1. LEAST SQUARES 113

b = ab[1]

return sum([((a*xs[i]+b)-ys[i])**2 for i in range(len(xs))])

result = minimize(squares,[2,1])

result

Out[]:

message: ’Optimization terminated successfully.’

njev: 6

fun: 1.196223130993053

nit: 4

nfev: 24

success: True

jac: array([ 2.98023224e-08, 1.49011612e-08])

status: 0

x: array([ 1.9010456 , 1.22559441])

hess_inv: array([[ 0.05, -0.1 ],

[-0.1 , 0.3 ]])

The result is essentially a dictionary with some extra formatting. The fun

key tells us the minimum value and the x key tells us how to choose the param-
eter to get the minimum. The fit is illustrated in figure 8.1.

−1 0 1 2 3 4 5
0

2

4

6

8

10

Figure 8.1: A simple least squares approximation



114 CHAPTER 8. LEAST SQUARES

We minimize this function with calculus. We set

0 =
∂φ

a
=

n
∑

k=0

2xk (axk + b− yk)

0 =
∂φ

b
=

n
∑

k=0

2 (axk + b− yk)

These are called the normal equations. Believe it or not these are two equa-
tions in two unknowns. They can be reduced to

∑

x2ka+
∑

xkb =
∑

xkyk
∑

xka+ (n+ 1)b =
∑

yk

The solution is found by näıve Gaussian Elimination, and is ugly. Let

d11 =
∑

x2k

d12 = d21 =
∑

xk

d22 = n+ 1

e1 =
∑

xkyk

e2 =
∑

yk

We want to solve

d11a+ d12b = e1

d21a+ d22b = e2

Gaussian Elimination produces

a =
d22e1 − d12e2
d22d11 − d12d21

b =
d11e2 − d21e1
d22d11 − d12d21

The answer is not so enlightening as the means of finding the solution.
We should, for a moment, consider whether this is indeed the solution. Our

calculations have only shown an extrema at this choice of (a, b); could it not be
a maxima?

8.1.3 Least Squares from Basis Functions

In many, but not all cases, the class of functions, F , is the span of a small set of
functions. This case is simpler to explore and we consider it here. In this case
F can be viewed as a vector space over the real numbers. That is, for f, g ∈ F ,



8.1. LEAST SQUARES 115

and α, β ∈ R, then αf + βg ∈ F , where the function αf is that function such
that (αf)(x) = αf(x).

Now let {gj(x)}mj=0 be a set of m+ 1 linearly independent functions, i.e.,

c0g0(x) + c1g1(x) + . . .+ cmgm(x) = 0 ∀x ⇒ c0 = c1 = . . . = cm = 0

Then we say that F is spanned by the functions {gj(x)}mj=0 if

F =







f(x) =
∑

j

cjgj(x) | cj ∈ R, j = 0, 1, . . . ,m







.

In this case the functions gj are basis functions for F . Note the basis functions
need not be unique: a given class of functions will usually have more than one
choice of basis functions.

Example 8.1. The class F = {f(x) = ax+ b | a, b ∈ R } is spanned by the two
functions g0(x) = 1, and g1(x) = x. However, it is also spanned by the two
functions g̃0(x) = 2x+ 1, and g̃1(x) = x− 1.

To find the least squares best approximant of F for a given set of data, we
minimize the square of the ℓ2 norm of the error; that is we minimize the function

φ (c0, c1, . . . , cm) =

n
∑

k=0









∑

j

cjgj(xk)



 − yk





2

(8.1)

Again we set partials to zero and solve

0 =
∂φ

ci
=

n
∑

k=0

2









∑

j

cjgj(xk)



 − yk



 gi(xk)

This can be rearranged to get

m
∑

j=0

[

∑

k

gj(xk)gi(xk)

]

cj =

n
∑

k=0

ykgi(xk)

If we now let

dij =

n
∑

k=0

gj(xk)gi(xk), ei =

n
∑

k=0

ykgi(xk),

Then we have reduced the problem to the linear system (again, called the normal
equations):















d00 d01 d02 · · · d0m
d10 d11 d12 · · · d1m
d20 d21 d22 · · · d2m
...

...
...

. . .
...

dm0 dm1 dm2 · · · dmm





























c0
c1
c2
...
cm















=















e0
e1
e2
...
em















(8.2)



116 CHAPTER 8. LEAST SQUARES

The choice of the basis functions can affect how easy it is to solve this system.
We explore this in Section 8.2. Note that we are talking about the basis {gj}mj=0,
and not exactly about the class of functions F .

For example, consider what would happen if the system of normal equations
were diagonal. In this case, solving the system would be rather trivial.

Example Problem 8.2. Consider the case where m = 0, and g0(x) = lnx.
Find the least squares approximation of the data

x 0.50 0.75 1.0 1.50 2.0 2.25 2.75 3.0
y −1.187098 −0.452472 −0.068077 0.713938 1.165234 1.436975 1.725919 1.841422

Solution: Essentially we are trying to find the c such that c lnx best approxi-
mates the data. The system of equation 8.2 reduces to the 1-D equation:

[

Σk ln
2 xk

]

c = Σkyk lnxk

For our data, this reduces to:

4.0960c = 6.9844

so we find c = 1.7052. The data and the least squares interpolant are shown in
Figure 8.2. ⊣

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0.5  1  1.5  2  2.5  3

Figure 8.2: The data of Example Problem 8.2 and the least squares interpolant
are shown.

Example 8.3. Consider the awfully chosen basis functions:

g0(x) =
( ǫ

2
− 1
)

x2 − ǫ

2
x+ 1

g1(x) = x3 +
( ǫ

2
− 1
)

(

x2 + x
)

+ 1

where ǫ is small, around machine precision.



8.2. ORTHONORMAL BASES 117

Suppose the data are given at the nodes x0 = 0, x1 = 1, x2 = −1. We want
to set up the normal equations, so we compute some of the dij . First we have
to evaluate the basis functions at the nodes xi. But this example was rigged to
give:

g0(x0) = 1, g0(x1) = 0, g0(x2) = ǫ

g1(x0) = 1, g1(x1) = ǫ, g1(x2) = 0

After much work we find we want to solve

[

1 + ǫ2 1
1 1 + ǫ2

] [

c0
c1

]

=

[

y0 + ǫy2
y0 + ǫy1

]

However, the computer would only find this if it had infinite precision. Since it
does not, and since ǫ is rather small, the computer thinks ǫ2 = 0, and so tries
to solve the system

[

1 1
1 1

] [

c0
c1

]

=

[

y0 + ǫy2
y0 + ǫy1

]

When y1 6= y2, this has no solution. Bummer.
This kind of thing is common in the method of least squares: the coefficients

of the normal equations include terms like

gi(xk)gj(xk).

When the gi are small at the nodes xk, these coefficients can get really small,
since we are squaring.

Now we draw a rough sketch of the basis functions. We find they do a pretty
poor job of discriminating around all the nodes.

8.2 Orthonormal Bases

In the previous section we saw that poor choice of basis vectors can lead to nu-
merical problems. Roughly speaking, if gi(xk) is small for some i’s and k’s, then
some dij can have a loss of precision when two small quantities are multiplied
together and rounded to zero.

Poor choice of basis vectors can also lead to numerical problems in solution
of the normal equations, which will be done by Gaussian Elimination.

Consider the case where F is the class of polynomials of degree no greater
than m. For simplicity we will assume that all xi are in the interval [0, 1]. The
most obvious choice of basis functions is gj(x) = xj . This certainly gives a basis
for F , but actually a rather poor one. To see why, look at the graph of the basis
functions in Figure 8.4. The basis functions look too much alike on the given
interval.



118 CHAPTER 8. LEAST SQUARES

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

g0(x)
g1(x)

Figure 8.3: The basis functions g0(x) =
(

ǫ
2 − 1

)

x2 − ǫ
2x + 1, and g1(x) =

x3 +
(

ǫ
2 − 1

) (

x2 + x
)

+ 1 are shown for ǫ = 0.05. Note that around the three
nodes 0, 1,−1, these two functions take nearly identical values. This can lead
to a system of normal equations with no solution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Figure 8.4: The polynomials xi for i = 0, 1, . . . , 6 are shown on [0, 1]. These
polynomials make a bad basis because they look so much alike, essentially.

A better basis for this problem is the set of Chebyshev Polynomials of the
first kind, i.e., gj(x) = Tj(x), where

T0(x) = 1, T1(x) = x, Ti+1(x) = 2xTi(x) − Ti−1(x).

These polynomials are illustrated in Figure 8.5.



8.2. ORTHONORMAL BASES 119

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

Figure 8.5: The Chebyshev polynomials Tj(x) for j = 0, 1, . . . , 6 are shown on
[0, 1]. These polynomials make a better basis for least squares because they
are orthogonal under some inner product. Basically, they do not look like each
other.

8.2.1 Alternatives to Normal Equations

It turns out that the Normal Equations method isn’t really so great. We consider
other methods. First, we define A as the n×m matrix defined by the entries:

aij = gj(xi), i = 0, 1, . . . , n, j = 0, 1, . . . ,m.

That is

A =























g0(x0) g1(x0) g2(x0) · · · gm(x0)
g0(x1) g1(x1) g2(x1) · · · gm(x1)
g0(x2) g1(x2) g2(x2) · · · gm(x2)
g0(x3) g1(x3) g2(x3) · · · gm(x3)
g0(x4) g1(x4) g2(x4) · · · gm(x4)

...
...

...
. . .

...
g0(xn) g1(xn) g2(xn) · · · gm(xn)























We write it in this way since we are thinking of the case where n≫ m, so A is
“tall.”

After some inspection, we find that the Normal Equations can be written
as:

A⊤A c = A⊤y. (8.3)

Now let the vector c be identified, in the natural way, with a function in
F . That is c is identified with f(x) =

∑m
j=0 cjgj(x). You should now convince

yourself that
Ac = f(x).

And thus the residual, or error, of this function is r = y − Ac.



120 CHAPTER 8. LEAST SQUARES

In our least squares theory we attempted to find that c that minimized

‖y − Ac‖22 = (y − A c)
⊤
(y − A c)

We can see this as minimizing the Euclidian distance from y to A c. For this
reason, we will have that the residual is orthogonal to the column space of A,
that is we want

A
⊤r = A

⊤(y − A c) = 0.

This is just the normal equations. We could rewrite this, however, in the fol-
lowing form: find c, r such that

[

I A

A⊤ 0

] [

r

c

]

=

[

y

0

]

This is now a system of n+m variables and unknowns, which can be solved by
specialized means. This is known as the augmented form. We briefly mention
that näıve Gaussian Elimination is not appropriate to solve the augmented form,
as it turns out to be equivalent to using the normal equations method.

8.3 Orthogonal Least Squares

The method described in Section 8.1, sometimes referred to as “ordinary least
squares,” assumes that measurement error is found entirely in the dependent
variable, and that there is no error in the independent variables.

For example, consider the case of two variables, x and y, which are thought
to be related by an equation of the form y = mx+b. A number of measurements
are made, giving the two sequences {xi}ni=1 and {yi}ni=1. Ordinary least squares
assumes, that

yi = mxi + b+ ǫi,

where ǫi, the error of the ith measurement, is a random variable. It is usually
assumed that E [ǫi] = 0, i.e., that the measurements are “unbiased.” Under the
further assumption that the errors are independent and have the same variance,
the ordinary least squares solution is a very good one.1

However, what if it were the case that

yi = m (xi + ξi) + b + ǫi,

i.e., that there is actually error in the measurement of the xi? In this case, the
orthogonal least squares method is appropriate.

The difference between the two methods is illustrated in Figure 8.6. In
Figure 8.6a, the ordinary least squares method is shown; it minimizes the sum
of the squared lengths of vertical lines from observations to a line, reflecting

1This means that the ordinary least squares solution gives an unbiased estimator of m

and b, and, moreover, gives the estimators with the lowest variance among all linear, a priori

estimators. For more details on this, locate the Gauss-Markov Theorem in a good statistics
textbook.



8.3. ORTHOGONAL LEAST SQUARES 121

the assumption of no error in xi. The orthogonal least squares method will
minimize the sum of the squared distances from observations to a line, as shown
in Figure 8.6b.

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6
 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6

(a) Ordinary Least Squares

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6
 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6

(b) Orthogonal Least Squares

Figure 8.6: The ordinary least squares method, as shown in (a), minimizes the
sum of the squared lengths of the vertical lines from the observed points to the
regression line. The orthogonal least squares, shown in (b), minimizes the sum
of the squared distances from the points to the line. The offsets from points to
the regression line in (b) may not look orthogonal due to improper aspect ratio
of the figure.

We construct the solution geometrically. Let
{

x(i)
}m

i=1
be the set of obser-

vations, expressed as vectors in R
n. The problem is to find the vector n and

number d such that the hyperplane n⊤x = d is the plane that minimizes the
sum of the squared distances from the points to the plane. We can solve this
problem using vector calculus.

The function
1

‖n‖22

m
∑

i=1

∥

∥

∥n
⊤x(i) − d

∥

∥

∥

2

2
.

is the one to be minimized with respect to n and d. It gives the sum of the
squared distances from the points to the plane described by n and d. To simplify
its computation, we will minimize it subject to the constraint that ‖n‖22 = 1.
Thus our problem is to find n and d that solve

min
n⊤n=1

m
∑

i=1

∥

∥

∥n
⊤x(i) − d

∥

∥

∥

2

2
.

We can express this as min f(n, d) subject to g(n, d) = 1. The solution of this
problem uses the Lagrange multipliers technique.

Let L (n, d, λ) = f(n, d)−λg(n, d). The Lagrange multipliers theory tells us
that a necessary condition for n, d to be the solution is that there exists λ such



122 CHAPTER 8. LEAST SQUARES

that the following hold:











∂L
∂d (n, d, λ) = 0

∇nL (n, d, λ) = 0

g (n, d) = 1

Let X be the m×n matrix whose ith row is the vector x(i)⊤. We can rewrite
the Lagrange function as

L (n, d, λ) = (Xn− d1m)
⊤
(Xn− d1m)− λn⊤n

= n⊤X⊤Xn− 2d1m
⊤Xn+ d21m

⊤1m − λn⊤n

We solve the necessary condition on ∂L
∂d .

0 =
∂L
∂d

(n, d, λ) = 2d1m
⊤1m − 21m

⊤Xn ⇒ d = 1m
⊤Xn/1m

⊤1m

This essentially tells us that we will zero the first moment of the data around
the line. Note that this determination of d requires knowledge of n. However,
since this is a necessary condition, we can plug it into the gradient equation:

0 = ∇nL (n, d, λ) = 2X⊤
Xn−2d

(

1m
⊤
X
)⊤−2λn = 2

[

X
⊤
Xn− 1m

⊤Xn

1m
⊤1m

(

1m
⊤
X
)⊤ − λn

]

The middle term is a scalar times a vector, so the multiplication can be com-
muted, this gives

0 =

[

X⊤Xn− X⊤1m1m
⊤X

1m
⊤1m

n− λn
]

=

[

X⊤X− X⊤1m1m
⊤X

1m
⊤1m

− λI
]

n

Thus n is an eigenvector of the matrix

M = X⊤X− X⊤1m1m
⊤X

1m
⊤1m

The final condition of the three Lagrange conditions is that g(n, d) = n⊤n =
1. Thus if n is a minimizer, then it is a unit eigenvector of M.

It is not clear which eigenvector is the right one, so we might have to check
all the eigenvectors. However, further work tells us which eigenvector it is.
First we rewrite the function to be minimized, when the optimal d is used:



8.3. ORTHOGONAL LEAST SQUARES 123

f̂(n) = f(n,1m
⊤Xn/1m

⊤1m). We have

f̂(n) = n⊤X⊤Xn− 2
1m

⊤Xn

1m
⊤1m

1m
⊤Xn+

(

1m
⊤Xn

1m
⊤1m

)2

1m
⊤1m

= n⊤X⊤Xn− 2
n⊤X⊤1m1m

⊤Xn

1m
⊤1m

+
n⊤X⊤1m1m

⊤Xn1m
⊤1m

1m
⊤1m1m

⊤1m

= n⊤
X
⊤
Xn− 2

n⊤X⊤1m1m
⊤Xn

1m
⊤1m

+
n⊤X⊤1m1m

⊤Xn

1m
⊤1m

= n⊤X⊤Xn− n⊤X⊤1m1m
⊤Xn

1m
⊤1m

= n⊤

[

X⊤X− X⊤1m1m
⊤X

1m
⊤1m

]

n

= n⊤Mn

This sequence of equations only required that the d be the optimal d for the
given n, and used the fact that a scalar is it’s own transpose, thus 1m

⊤Xn =
n⊤X⊤1m.

Now if n is a unit eigenvector of M, with corresponding eigenvalue λ, then
n⊤Mn = λ. Note that because f(n, d) is defined as w⊤w, for some vector w,
then the matrix M must be positive definite, i.e., λ must be positive. However,
we want to minimize λ. Thus we take n to be the unit eigenvector associated
with the smallest eigenvalue.

Note that, by roundoff, you may compute that M has some negative eigen-
values, though they are small in magnitude. Thus one should select, as n, the
unit eigenvector associated with the smallest eigenvalue in absolute value.

Example Problem 8.4. Find the equation of the line which best approximates
the 2D data {(xi, yi)}mi=1, by the orthogonal least squares method. Solution: In
this case the matrix X is















x1 y1
x2 y2
x3 y3
...

...
xm ym

















124 CHAPTER 8. LEAST SQUARES

Thus we have that

M = X
⊤
X− X⊤1m1m

⊤X

1m
⊤1m

,

=

[ ∑

x2i
∑

xiyi
∑

xiyi
∑

y2i

]

− 1

m

[

(
∑

xi)
2 ∑

xi
∑

yi
∑

xi
∑

yi (
∑

yi)
2

]

,

=

[ ∑

x2i
∑

xiyi
∑

xiyi
∑

y2i

]

−m
[

x̄2 x̄ȳ
x̄ȳ ȳ2

]

,

=

[ ∑

x2i −mx̄2
∑

xiyi −mx̄ȳ
∑

xiyi −mx̄ȳ
∑

y2i −mȳ2
]

=

[

2α β
β 2γ

]

. (8.4)

where we use x̄, ȳ, to mean, respectively, the mean of the x- and y-values. The
characteristic polynomial of the matrix, whose roots are the eigenvalues of the
matrix is

p(λ) = det

[

2α− λ β
β 2γ − λ

]

= 4αγ − β2 − 2(α+ γ)λ+ λ2.

The roots of this polynomial are given by the quadratic equation

λ± =
2(α+ γ)±

√

4 (α+ γ)2 − 4 (4αγ − β2)

2
= (α+ γ)±

√

(α− γ)2 + β2

We want the smaller eigenvalue, λ− = (α+γ)−
√

(α− γ)2 + β2. The associated
eigenvector is in the null space of the matrix

0 =

[

2α− λ− β
β 2γ − λ−

]

v =

[

2α− λ− β
β 2γ − λ−

] [

−k
1

]

=

[

β − k (2α− λ−)
−kβ + 2γ − λ−

]

This is solved by

k =
2γ − λ−

β
=

(γ − α) +
√

(γ − α)2 + β2

β

=

∑

(y2i − x2i )−m
(

ȳ2 − x̄2
)

+

√

(
∑

(y2i − x2i )−m (ȳ2 − x̄2))2 + 4 (
∑

xiyi −mx̄ȳ)2

2
∑

xiyi −mx̄ȳ
.

(8.5)

Thus the best plane through the data is of the form

−kx+ 1y = d or y = kx+ d

Note that the eigenvector, v, that we used is not a unit vector. However it
is parallel to the unit vector we want, and can still use the regular formula to



8.3. ORTHOGONAL LEAST SQUARES 125

compute the optimal d.

d = 1m
⊤Xn/1m

⊤1m =
1

m
1m

⊤X

[

−k
1

]

=
[

x̄ ȳ
]

[

−k
1

]

= ȳ − kx̄

Thus the optimal line through the data is

y = kx+ d = k (x− x̄) + ȳ or y − ȳ = k (x− x̄) ,

with k defined in equation 8.5.
⊣

8.3.1 Computing the Orthogonal Least Squares Approxi-
mant

Just as the Normal Equations equation 8.3 define the solution to the ordinary
least squares approximant, but are not normally used to solve the problem, so
too is the above described means of computing the orthogonal least squares not
a good idea.

First we define

W = X− 1m1m
⊤X

1m
⊤1m

.

Now note that

W
⊤
W =

(

X− 1m1m
⊤X

1m
⊤1m

)⊤(

X− 1m1m
⊤X

1m
⊤1m

)

= X
⊤
X− 2

X⊤1m1m
⊤X

1m
⊤1m

+

(

1m1m
⊤X
)⊤

1m1m
⊤X

(

1m
⊤1m

)2

= X⊤X− 2
X⊤1m1m

⊤X

1m
⊤1m

+
X⊤1m(1m

⊤1m)1m
⊤X

(

1m
⊤1m

)2 = X⊤X− 2
X⊤1m1m

⊤X

1m
⊤1m

+
X⊤1m1m

⊤X

1m
⊤1m

= X⊤X− X⊤1m1m
⊤X

1m
⊤1m

= M.

We now need some linear algebra magic:

Definition 8.3.1. A square matrix U is called unitary if its inverse is its trans-
pose, i.e.,

U⊤U = I = UU⊤.

From the first equation, we see that the columns of U form a collection of
orthonormal vectors. The second equation tells that the rows of U are also such
a collection.

Definition 8.3.2. Every m× n matrix B can be decomposed as

B = UΣV⊤,



126 CHAPTER 8. LEAST SQUARES

where U and V are unitary matrices, U is m×m, V is n × n, and Σ is m × n,
and has nonzero elements only on its diagonal. The values of the diagonal of Σ
are the singular values of B. The column vectors of V span the row space of B,
and the column vectors of U contain the column space of B.

The singular value decomposition generalizes the notion of eigenvalues and
eigenvalues to the case of nonsquare matrices. Let u(i) be the ith column vector
of U, v(i) the ith column of V, and let σi be the ith element of the diagonal of
Σ. Then if x =

∑

i αiv
(i), we have

Bx = UΣV
⊤
∑

i

αiv
(i) = UΣ [α1α2 . . . αn]

⊤
= U

























σ1α1 0 . . . 0
0 σ2α2 . . . 0
...

...
. . .

...
0 0 . . . σnαn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

























=
∑

i

σiαiu
(i).

Thus v(i) and u(i) act as an “eigenvector pair” with “eigenvalue” σi.
The singular value decomposition is computed by the octave/Matlab com-

mand [U,S,V] = svd(B). The decomposition is computed such that the di-
agonal elements of S, the singular values, are positive, and decreasing with
increasing index.

Now we can use the singular value decomposition on W:

W = UΣV⊤.

Thus
M = W

⊤
W = VΣ

⊤
U
⊤
UΣV

⊤ = VΣ
⊤
IΣV

⊤ = VS
2
V
⊤,

where S2 is the n×n diagonal matrix whose ith diagonal is σ2
i . Thus we see that

the solution to the orthogonal least squares problem, the eigenvector associated
with the smallest eigenvalue of M, is the column vector of V associated with
the smallest, in absolute value, singular value of W. In octave/Matlab, this is
V(:,n).

This may not appear to be a computational savings, but if M is computed up
front, and its eigenvectors are computed, there is loss of precision in its smallest
eigenvalues which might lead us to choose the wrong normal direction (especially
if there is more than one!). On the other hand, M is a n × n matrix, whereas
W is m × n. If storage is at a premium, and the method is being reapplied
with new observations, it may be preferrable to keep M, rather than keeping W.
That is, it may be necessary to trade conditioning for space.

8.3.2 Principal Component Analysis

The above analysis leads us to the topic of Principal Component Analysis.
Suppose the m × n matrix X represents m noisy observations of some process,



8.3. ORTHOGONAL LEAST SQUARES 127

where each observation is a vector in R
n. Suppose the observations nearly lie in

some k-dimensional subspace of Rn, for k < n. How can you find an approximate
value of k, and how do you find the k-dimensional subspace?

As in the previous subsection, let

W = X− 1m1m
⊤X

1m
⊤1m

= X− 1mX̄, where X̄ = 1m
⊤X/1m

⊤1m.

Now note that X̄ is the mean of the m observations, as a row vector in R
n.

Under the assumption that the noise is approximately the same for each observa-
tion, we should think that X̄ is likely to be in or very close to the k-dimensional
subspace. Then each row of W should be like a vector which is contained in the
subspace. If we take some vector v and multiply Wv, we expect the resultant
vector to have small norm if v is not in the k-dimensional subspace, and to have
a large norm if it is in the subspace.

You should now convince yourself that this is related to the singular value
decomposition of W. Decomposing v =

∑

i αiv
(i), we have Wv =

∑

i σiαiu
(i),

and thus product vector has small norm if the αi associated with large σi are
small, and large norm otherwise. That is the principal directions of the “best”
k-dimensional subspace associated with X are the k columns of V associated
with the largest singular values of W.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

cum. sum sqrd. sing. vals.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40

cum. sum sqrd. sing. vals.

Figure 8.7: Noisy 5-dimensional data lurking in R
40 are treated to Principal

Component Analysis. This figure shows the normalized cumulative sum of
squared singular values of W. There is a sharp “elbow” at k = 5, which in-
dicates the data is actually 5-dimensional.

If k is unknown a priori , a good value can be obtained by eyeing a graph
of the cumulative sum of squared singular values of W, and selecting the k that
makes this appropriately large.



128 CHAPTER 8. LEAST SQUARES

Exercises

(8.1) How do you know that the choice of constants ci in our least squares anal-
ysis actually find a minimum of equation 8.1, and not, say, a maximum?

(8.2) Our “linear” least squares might be better called the “affine” least squares.
In this exercise you will find the best linear function which approximates
a set of data. That is, find the function f(x) = cx which is the ordinary
least squares best approximant to the given data

x x0 x1 . . . xn
y y0 y1 . . . yn

(8.3) Find the constant that best approximates, in the ordinary least squares
sense, the given data x, y. (Hint: you can use equation 8.2 or equa-
tion 8.3 using a single basis function g0(x) = 1.) Do the xi values affect
your answer?

(8.4) Find the function f(x) = c which best approximates, in the ordinary least
squares sense, the data

x 1 −2 5
y 1 −2 4

(8.5) Find the function ax+ b that best approximates the data

x 0 −1 2
y 0 1 −1

Use the ordinary least squares method.
(8.6) Find the function ax+ b that best approximates the data of the previous

problem using the orthogonal least squares method.
(8.7) Find the function ax2 + b that best approximates the data

x 0 1 2
y 0.3 0.1 0.5

(8.8) Prove that the least squares solution is the solution of the normal equa-
tions, equation 8.3, and thus takes the form

c =
(

A⊤A
)−1

A⊤y.

(8.9) For ordinary least squares regression to the line y = mx + b, express the
approximate m in terms of the α, β, and γ parameters from equation 8.4.
Compare this to that found in equation 8.5.

(8.10) Any symmetric positive definite matrix, G can be used to define a norm
in the following way:

‖v‖
G
=df

√
v⊤Gv

The weighted least squares method for G and data A and y, finds the ĉ

that solves
min
c
‖Ac− y‖2

G



8.3. ORTHOGONAL LEAST SQUARES 129

Prove that the normal equations form of the solution of this problem is

A
⊤
GA ĉ = A

⊤
Gy.

(8.11) (Continuation) Let the symmetric positive definite matrix G have Cholesky
Factorization G = LL⊤, where L is a lower triangular matrix. Show that
the solution to the weighted least squares method is the ĉ that is the ordi-
nary (unweighted) least squares best approximate solution to the problem

L
⊤
Ac = L

⊤y.

(8.12) The r2 statistic is often used to describe the “goodness-of-fit” of the
ordinary least squares approximation to data. It is defined as

r2 =
‖Aĉ‖22
‖y‖22

,

where ĉ is the approximant A⊤A−1A⊤y.
(a) Prove that we also have

r2 = 1− ‖Aĉ− y‖22
‖y‖22

.

(b) Prove that the r2 parameter is “scale-invariant,” that is, if we change
the units of our data, the parameter is unchanged (although the value
of ĉ may change.)

(c) Devise a similar statistic for the orthogonal least squares approxima-
tion which is scale-invariant and rotation-invariant.

(8.13) As proved in Example Problem 8.4, the orthogonal least squares best
approximate line for data {(xi, yi)}mi=1 goes through the point (x̄, ȳ). Does
the same thing hold for the ordinary least squares best approximate line?

(8.14) Find the constant c such that f(x) = ln (cx) best approximates, in the
least squares sense, the given data

x x0 x1 . . . xn
y y0 y1 . . . yn

(Hint: You cannot use basis functions and equation 8.2 to solve this.
You must use the Definition 8.1.1.) The geometric mean of the numbers

a1, a2, . . . , an is defined as (
∏

ai)
1/n

. How does your answer relate to the
geometric mean?



130 CHAPTER 8. LEAST SQUARES



Chapter 9

Approximating Derivatives

9.1 Finite Differences

Suppose we have some blackbox function f(x) and we wish to calculate f ′(x)
at some given x. Not surprisingly, we start with Taylor’s theorem:

f(x+ h) = f(x) + f ′(x)h +
f ′′(ξ)h2

2
.

Rearranging we get

f ′(x) =
f(x+ h)− f(x)

h
− f ′′(ξ)h

2
.

Remember that ξ is between x and x + h, but its exact value is not known. If
we wish to calculate f ′(x), we cannot evaluate f ′′(ξ), so we approximate the
derivative by dropping the last term. That is, we calculate [f(x+ h)− f(x)] /h
as an approximation1 to f ′(x). In so doing, we have dropped the last term. If
there is a finite bound on f ′′(z) on the interval in question then the dropped
term is bounded by a constant times h. That is,

f ′(x) =
f(x+ h)− f(x)

h
+O (h) (9.1)

The error that we incur when we approximate f ′(x) by calculating [f(x+ h)− f(x)] /h
is called truncation error. It has nothing to do with the kind of error that you
get when you do calculations with a computer with limited precision; even if
you worked in infinite precision, you would still have truncation error.

The truncation error can be made small by making h small. However, as h
gets smaller, precision will be lost in equation 9.1 due to subtractive cancellation.
The error in calculation for small h is called roundoff error. Generally the
roundoff error will increase as h decreases. Thus there is a nonzero h for which

1This approximation for f ′(x) should remind you of the definition of f ′(x) as a limit.

131



132 CHAPTER 9. APPROXIMATING DERIVATIVES

the sum of these two errors is minimized. See Example Problem 9.5 for an
example of this.

The truncation error for this approximation is O (h). We may want a more
precise approximation. By now, you should know that any calculation starts
with Taylor’s Theorem:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(ξ1)

3!
h3

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(ξ2)

3!
h3

By subtracting these two lines, we get

f(x+ h)− f(x− h) = 2f ′(x)h +
f ′′′(ξ1) + f ′′′(ξ2)

3!
h3.

Thus

2f ′(x)h = f(x+ h)− f(x− h)− f ′′′(ξ1) + f ′′′(ξ2)

3!
h3

f ′(x) =
f(x+ h)− f(x− h)

2h
−
[

f ′′′(ξ1) + f ′′′(ξ2)

2

]

h2

6

If f ′′′(x) is continuous, then there is some ξ between ξ1, ξ2 such that f ′′′(ξ) =
f ′′′(ξ1)+f ′′′(ξ2)

2 . (This is the MVT at work.) Assuming some uniform bound on
f ′′′(·), we get

f ′(x) =
f(x+ h)− f(x− h)

2h
+O

(

h2
)

(9.2)

In some situations it may be necessary to use evaluations of a function at
“odd” places to approximate a derivative. These are usually straightforward to
derive, involving the use of Taylor’s Theorem. The following examples illustrate:

Example Problem 9.1. Use evaluations of f at x+ h and x+2h to approxi-
mate f ′(x), assuming f(x) is an analytic function, i.e., one with infintely many
derivatives. Solution: First use Taylor’s Theorem to expand f(x + h) and
f(x+ 2h), then subtract to get some factor of f ′(x):

f(x+ 2h) = f(x) + 2hf ′(x) + 4h2

2! f
′′(x) + 8h3

3! f
′′′(x) + 16h4

4! f
(4)(x) + . . .

f(x+ h) = f(x) + hf ′(x) + h2

2! f
′′(x) + h3

3! f
′′′(x) + h4

4! f
(4)(x) + . . .

f(x+ 2h)− f(x+ h) = hf ′(x) + 3h2

2! f
′′(x) + 7h3

3! f
′′′(x) + 15h4

4! f
(4)(x) + . . .

(f(x+ 2h)− f(x+ h)) /h = f ′(x) + 3h
2! f

′′(x) + 7h2

3! f
′′′(x) + 15h3

4! f
(4)(x) + . . .

Thus (f(x+ 2h)− f(x+ h)) /h = f ′(x) +O (h) ⊣
Example Problem 9.2. Show that

4f(x+ h)− f(x+ 2h)− 3f(x)

2h
= f ′(x) +O

(

h2
)

,



9.1. FINITE DIFFERENCES 133

for f with sufficient number of derivatives Solution: In this case we do not
have to find the approximation scheme, it is given to us. We only have to expand
the appropriate terms with Taylor’s Theorem. As before:

f(x+ h) = f(x) + hf ′(x) + h2

2! f
′′(x) + h3

3! f
′′′(x) + . . .

4f(x+ h) = 4f(x) + 4hf ′(x) + 4h2

2! f
′′(x) + 4h3

3! f
′′′(x) + . . .

f(x+ 2h) = f(x) + 2hf ′(x) + 4h2

2! f
′′(x) + 8h3

3! f
′′′(x) + . . .

4f(x+ h)− f(x+ 2h) = 3f(x) + 2hf ′(x) + 0f ′′(x) + −4h3

3! f ′′′(x) + . . .

4f(x+ h)− f(x+ 2h)− 3f(x) = 2hf ′(x) + −4h3

3! f ′′′(x) + . . .

(4f(x+ h)− f(x+ 2h)− 3f(x)) /2h = f ′(x) + −2h2

3! f ′′′(x) + . . .

⊣

9.1.1 Approximating the Second Derivative

Suppose we want to approximate the second derivative of some blackbox func-
tion f(x). Again, start with Taylor’s Theorem:

f(x+ h) = f(x) + f ′(x)h+
f ′′(x)

2
h2 +

f ′′′(x)

3!
h3 +

f (4)(x)

4!
h4 + . . .

f(x− h) = f(x)− f ′(x)h+
f ′′(x)

2
h2 − f ′′′(x)

3!
h3 +

f (4)(x)

4!
h4 − . . .

Now add the two series to get

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) + 2
f (4)(x)

4!
h4 + 2

f (6)(x)

6!
h6 + . . .

Then let

ψ(h) =
f(x+ h)− 2f(x) + f(x− h)

h2
= f ′′(x) + 2

f (4)(x)

4!
h2 + 2

f (6)(x)

6!
h4 + . . . ,

= f ′′(x) +
∞
∑

k=1

b2kh
2k.

Thus we can use Richardson Extrapolation on ψ(h) to get higher order
approximations.

This derivation also gives us the centered difference approximation to the
second derivative:

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O

(

h2
)

. (9.3)



134 CHAPTER 9. APPROXIMATING DERIVATIVES

9.2 Richardson Extrapolation

The centered difference approximation gives a truncation error of O
(

h2
)

, which
is better than O (h) . Can we do better? Let’s define

φ(h) =
1

2h
[f(x+ h)− f(x− h)] .

Had we expanded the Taylor’s Series for f(x + h), f(x − h) to more terms
we would have seen that

φ(h) = f ′(x) + a2h
2 + a4h

4 + a6h
6 + a8h

8 + . . .

The constants ai are a function of f (i+1)(x) only. (In fact, they should take the

value of f(i+1)(x)
(i+1)! .) What happens if we now calculate φ(h/2)?

φ(h/2) = f ′(x) +
1

4
a2h

2 +
1

16
a4h

4 +
1

64
a6h

6 +
1

256
a8h

8 + . . .

But we can combine this with φ(h) to get better accuracy. We have to be
a little tricky, but we can get the O

(

h2
)

terms to cancel by taking the right
multiples of these two approximations:

φ(h)− 4φ(h/2) = −3f ′(x) +
3

4
4h4 +

15

16
a6h

6 +
63

64
a8h

8 + . . .

4φ(h/2)− φ(h)
3

= f ′(x) − 1

4
4h4 − 5

16
a6h

6 − 21

64
a8h

8 + . . .

This approximation has a truncation error of O
(

h4
)

.
This technique of getting better approximations is known as the Richardson

Extrapolation, and can be repeatedly applied. We will also use this technique
later to get better quadrature rules–that is, ways of approximating the definite
integral of a function.

9.2.1 Abstracting Richardson’s Method

We now discuss Richardson’s Method in a more abstract framework. Suppose
you want to calculate some quantity L, and have found, through theory, some
approximation:

φ(h) = L+

∞
∑

k=1

a2kh
2k.

Let

D(n, 0) = φ

(

h

2n

)

.

Now define

D(n,m) =
4mD(n,m− 1)−D(n− 1,m− 1)

4m − 1
. (9.4)



9.2. RICHARDSON EXTRAPOLATION 135

We will be interested in calculating D(n, n) for some n. We claim that

D(n, n) = L+O
(

h2(n+1)
)

.

First we examine the recurrence for D(n,m). As in divided differences, we
use a pyramid table:

D(0, 0)
D(1, 0) D(1, 1)
D(2, 0) D(2, 1) D(2, 2)

...
...

...
. . .

D(n, 0) D(n, 1) D(n, 2) · · · D(n, n)

By definition we know how to calculate the first column of this table; every
other entry in the table depends on two other entries, one directly to the left,
and the other to the left and up one space. Thus to calculate D(n, n) we have
to compute this whole lower triangular array.

We want to show that D(n, n) = L + O
(

h2(n+1)
)

, that is D(n, n) is a

O
(

h2(n+1)
)

approximation to L. The following theorem gives this result:

Theorem 9.3 (Richardson Extrapolation). There are constants ak,m such that

D(n,m) = L+
∞
∑

k=m+1

ak,m

(

h

2n

)2k

(0 ≤ m ≤ n) .

The proof is by an easy, but tedious, induction. We skip the proof.

9.2.2 Using Richardson Extrapolation

We now try out the technique on an example or two.

Example Problem 9.4. Approximate the derivative of f(x) = log x at x = 1.
Solution: The real answer is f ′(1) = 1/1 = 1, but our computer doesn’t know
that. Define

φ(h) =
1

2h
[f(1 + h)− f(1− h)] =

log 1+h
1−h

2h
.

Let’s use h = 0.1. We now try to find D(2, 2), which is supposed to be a O
(

h6
)

approximation to f ′(1) = 1:

n\m 0 1 2

0
log 1.1

0.9

0.2 ≈ 1.003353477

1
log 1.05

0.95

0.1 ≈ 1.000834586 ≈ 0.999994954

2
log 1.025

0.975

0.05 ≈ 1.000208411 ≈ 0.999999686 ≈ 1.000000002

This shows that the Richardson method is pretty good. However, notice that
for this simple example, we have, already, that φ(0.00001) ≈ 0.999999999. ⊣



136 CHAPTER 9. APPROXIMATING DERIVATIVES

Example Problem 9.5. Consider the ugly function:

f(x) = arctan(x).

Attempt to find f ′(
√
2). Recall that f ′(x) = 1

1+x2 , so the value that we are

seeking is 1
3 . Solution: Let’s use h = 0.01. We now try to find D(2, 2), which

is supposed to be a O
(

h6
)

approximation to 1
3 :

n\m 0 1 2

0 0.333339506181068
1 0.333334876543723 0.333333333331274
2 0.33333371913582 0.333333333333186 0.333333333333313

Note that we have some motivation to use Richardson’s method in this case:
If we let

φ(h) =
1

2h

[

f(
√
2 + h)− f(

√
2− h)

]

,

then making h small gives a good approximation to f ′
(√

2
)

until subtractive
cancelling takes over. The following table illustrates this:

h φ(h)

1.0 0.39269908169872408
0.1 0.33395069677431943
0.01 0.33333950618106845
0.001 0.33333339506169679
0.0001 0.33333333395058062

1× 10−5 0.33333333334106813
1× 10−6 0.33333333332441484
1× 10−7 0.33333333315788138
1× 10−8 0.33333332760676626
1× 10−9 0.33333336091345694
1× 10−10 0.333333360913457
1× 10−11 0.333333360913457
1× 10−12 0.33339997429493451
1× 10−13 0.33306690738754696
1× 10−14 0.33306690738754696
1× 10−15 0.33306690738754691
1× 10−16 0

The data are illustrated in Figure 9.1. Notice that φ(h) gives at most 10
decimal places of accuracy, then begins to deteriorate; Note however, we get 13
decimal places from D(2, 2). ⊣



9.2. RICHARDSON EXTRAPOLATION 137

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1e-16  1e-14  1e-12  1e-10  1e-08  1e-06  0.0001  0.01  1

total error

Figure 9.1: The total error for the centered difference approximation to f ′(
√
2) is

shown versus h. The total error is the sum of a truncation term which decreases
as h decreases, and a roundoff term which increases. The optimal h value is
around 1× 10−5. Note that Richardson’s D(2, 2) approximation with h = 0.01
gives much better results than this optimal h.



138 CHAPTER 9. APPROXIMATING DERIVATIVES

Exercises

(9.1) Derive the approximation

f ′(x) ≈ 4f(x+ h)− 3f(x)− f(x− 2h)

6h

using Taylor’s Theorem.
(a) Assuming that f(x) has bounded derivatives, give the accuracy of the

above approximation. Your answer should be something like O
(

h?
)

.
(b) Let f(x) = x3. Approximate f ′(0) with this approximation, using

h = 1
4 .

(9.2) Let f(x) be an analytic function, i.e., one which is infinitely differentiable.
Let ψ(h) be the centered difference approximation to the first derivative:

ψ(h) =
f(x+ h)− f(x− h)

2h

(a) Show that ψ(h) = f ′(x) + h2

3! f
′′′(x) + h4

5! f
(5)(x) + h6

7! f
(7)(x) + . . .

(b) Show that
8 (ψ(h)− ψ(h/2))

h2
= f ′′′(x) +O

(

h2
)

.

(9.3) Derive the approximation

f ′(x) ≈ 4f(x+ 3h) + 5f(x)− 9f(x− 2h)

30h

using Taylor’s Theorem.
(a) What order approximation is this? (Assume f(x) has bounded deriva-

tives of arbitrary order.)
(b) Use this formula to approximate f ′(0), where f(x) = x4, and h = 0.1

(9.4) Suppose you want to know quantity Q, and can approximate it with some
formula, say φ(h), which depends on parameter h, and such that φ(h) =
Q+ a1h+ a2h

2 + a3h
3 + a4h

4 + . . . Find some linear combination of φ(h)
and φ(−h) which is a O

(

h2
)

approximation to Q.
(9.5) Assuming that φ(h) = Q+ a2h

2 + a4h
4 + a6h

6 . . ., find some combination
of φ(h), φ(h/3) which is a O

(

h4
)

approximation to Q.
(9.6) Let λ be some number in (0, 1). Assuming that φ(h) = Q + a2h

2 +
a4h

4 + a6h
6 . . ., find some combination of φ(h), φ(λh) which is a O

(

h4
)

approximation to Q. To make the constant associated with the h4 term
small in magnitude, what should you do with λ? Is this practical? Note
that the method of Richardson Extrapolation that we considered used the
value λ = 1/2.

(9.7) Assuming that φ(h) = Q+ a2h
2 + a4h

4 + a6h
6 . . ., find some combination

of φ(h), φ(h/4) which is a O
(

h4
)

approximation to Q.
(9.8) Suppose you have some great computational approximation to the quan-

tity Q such that ψ(h) = Q + a3h
3 + a6h

6 + a9h
9 . . . Can you find some

combination of ψ(h), ψ(h/2) which is a O
(

h6
)

approximation to Q?



9.2. RICHARDSON EXTRAPOLATION 139

(9.9) Complete the following Richardson’s Extrapolation Table, assuming the
first column consists of values D(n, 0) for n = 0, 1, 2:

n\m 0 1 2

0 2
1 1.5 ?
2 1.25 ? ?

(See equation 9.4 if you’ve forgotten the definitions.)
(9.10) Write code to complete a Richardson’s Method table, given the first

column.
Your m-file should have header line like:
function Dnn = richardsons(col0)

where Dnn is the value at the lower left corner of the table, D(n, n) while
col0 is the column of n + 1 values D(i, 0), for i = 0, 1, . . . , n. Test your
code on the following input:
octave:1> col0 = [1 0.5 0.25 0.125 0.0625 0.03125];

octave:2> richardsons(col0)

ans = 0.019042

(a) What do you get when you try the following?
octave:5> col0 = [1.5 0.5 1.5 0.5 1.5 0.5 1.5];

octave:6> richardsons(col0)

(b) What do you get when you try the following?
octave:7> col0 = [0.9 0.99 0.999 0.9999 0.99999];

octave:8> richardsons(col0)



140 CHAPTER 9. APPROXIMATING DERIVATIVES



Chapter 10

Integrals and Quadrature

10.1 The Definite Integral

Often enough the numerical analyst is presented with the challenge of finding
the definite integral of some function:

∫ b

a

f(x) dx.

In your golden years of Calculus, you learned the Fundamental Theorem of
Calculus, which claims that if f(x) is continuous, and F (x) is an antiderivative
of f(x), then

∫ b

a

f(x) dx = F (b)− F (a).

What you might not have been told in Calculus is there are some functions
for which a closed form antiderivative does not exist or at least is not known to
humankind. Nevertheless, you may find yourself in a situation where you have
to evaluate an integral for just such an integrand. An approximation will have
to do.

10.1.1 Upper and Lower Sums

We will review the definition of the Riemann integral of a function. A partition
of an interval [a, b] is a finite, ordered collection of nodes xi:

a = x0 < x1 < x2 < · · · < xn = b.

Given such a partition, P, define the upper and lower bounds on each subinterval
[xj , xj+1] as follows:

mi = inf {f(x) | xi ≤ x ≤ xi+1 }
Mi = sup {f(x) | xi ≤ x ≤ xi+1 }

141



142 CHAPTER 10. INTEGRALS AND QUADRATURE

Then for this function f and partition P, define the upper and lower sums:

L(f, P ) =

n−1
∑

i=0

mi (xi+1 − xi)

U(f, P ) =

n−1
∑

i=0

Mi (xi+1 − xi)

We can interpret the upper and lower sums graphically as the sums of areas
of rectangles defined by the function f and the partition P , as in Figure 10.1.

(a) The Lower Sum (b) The Upper Sum

Figure 10.1: The (a) lower, and (b) upper sums of a function on a given interval
are shown. These approximations to the integral are the sums of areas of rect-
angles. Note that the lower sums are an underestimate, and the upper sums an
overestimate of the integral.

Notice a few things about the upper, lower sums:
(i) L(f, P ) ≤ U(f, P ).
(ii) If we switch to a “better” partition (i.e., a finer one), we expect that

L(f, ·) increases and U(f, ·) decreases.
The notion of integrability familiar from Calculus class (that is Riemann

Integrability) is defined in terms of the upper and lower sums.

Definition 10.1. A function f is Riemann Integrable over interval [a, b] if

sup
P
L(f, P ) = inf

P
U(f, P ),

where the supremum and infimum are over all partitions of the interval [a, b].
Moreover, in case f(x) is integrable, we define the integral

∫ b

a

f(x) dx = inf
P
U(f, P ),

You may recall the following



10.1. THE DEFINITE INTEGRAL 143

Theorem 10.2. Every continuous function on a closed bounded interval of the
real line is Riemann Integrable (on that interval).

Continuity is sufficient, but not necessary.

Example 10.3. Consider the Heaviside function:

f(x) =

{

0 x < 0
1 0 ≤ x

This function is not continuous on any interval containing 0, but is Riemann
Integrable on every closed bounded interval.

Example 10.4. Consider the Dirichlet function:

f(x) =

{

0 x rational
1 x irrational

For any partition P of any interval [a, b], we have L(f, P ) = 0, while U(f, P ) =
1, so

sup
P
L(f, P ) = 0 6= 1 = inf

P
U(f, P ),

so this function is not Riemann Integrable.

10.1.2 Approximating the Integral

The definition of the integral gives a simple method of approximating an inte-

gral
∫ b

a f(x) dx. The method cuts the interval [a, b] into a partition of n equal

subintervals xi = a+ b−a
n , for i = 0, 1, . . . , n. The algorithm then has to some-

how find the supremum and infimum of f(x) on each interval [xi, xi+1]. The
integral is then approximated by the mean of the lower and upper sums:

∫ b

a

f(x) dx ≈ 1

2
(L(f, P ) + U(f, P )) .

Because the value of the integral is between L(f, P ) and U(f, P ), this approxi-
mation has error at most

1

2
(U(f, P )− L(f, P )) .

Note that in general, or for a black box function, it is usually not feasible
to find the suprema and infima of f(x) on the subintervals, and thus the lower
and upper sums cannot be calculated. However, if some information is known
about the function, it becomes easier:

Example 10.5. Consider for example, using this method on some function
f(x) which is monotone increasing, that is x ≤ y implies f(x) ≤ f(y). In this
case, the infimum of f(x) on each interval occurs at the leftmost endpoint, while



144 CHAPTER 10. INTEGRALS AND QUADRATURE

the supremum occurs at the right hand endpoint. Thus for this partition, P, we
have

L(f, P ) =

n−1
∑

k=0

mi |xk+1 − xk| =
|b− a|
n

n−1
∑

k=0

f(xk)

U(f, P ) =

n−1
∑

k=0

Mi |xk+1 − xk| =
|b− a|
n

n−1
∑

k=0

f(xk+1) =
|b− a|
n

n
∑

k=1

f(xk)

Then the error of the approximation is

1

2
(U(f, P )− L(f, P )) = 1

2

|b− a|
n

[f(xn)− f(x0)] =
|b− a| [f(b)− f(a)]

2n
.

10.1.3 Simple and Composite Rules

For the remainder of this chapter we will study “simple” quadrature rules, i.e.,
rules which approximate the integral of a function, f(x) over an interval [a, b]
by means of a number of evaluations of f at points in this interval. The error
of a simple quadrature rule usually depends on the function f, and the width
of the interval [a, b] to some power which is determined by the rule. That is we
usually think of a simple rule as being applied to a small interval.

To use a simple rule on a larger interval, we usually cast it into a “composite”
rule. Thus the trapezoidal rule, which we will study next becomes the composite
trapezoidal rule. The means of extending a simple rule to a composite rule is
straightforward: Partition the given interval into subintervals, apply the simple
rule to each subinterval, and sum the results. Thus, for example if the interval
in question is [α, β], and the partition is α = x0 < x1 < x2 < . . . < xn = β, we
have

composite rule on [α, β] =

n−1
∑

i=0

simple rule applied to [xi, xi+1].

10.2 Trapezoidal Rule

Suppose we are trying to approximate the integral

∫ b

a

f(x) dx,

for some unpleasant or black box function f(x).
The trapezoidal rule approximates the integral

∫ b

a

f(x) dx

by the (signed) area of the trapezoid through the points (a, f(a)) , (b, f(b)) , and
with one side the segment from a to b. See Figure 10.2.



10.2. TRAPEZOIDAL RULE 145

lleft

uright

a b

Figure 10.2: The trapezoidal rule for approximating the integral of a function
over [a, b] is shown.

By old school math, we can find this signed area easily. This gives the
(simple) trapezoidal rule:

∫ b

a

f(x) dx ≈ (b− a) f(a) + f(b)

2
.

The composite trapezoidal rule can be written in a simplified form, one
which you saw in your calculus class, if the interval in question is partitioned
into equal width subintervals. That is if you let [α, β] be partitioned by

α = x0 < x1 < x2 < x3 < . . . < xn = β,

with xi = α+ ih, where h = (β − α)/n, then the composite trapezoidal rule is

∫ β

α

f(x) dx =

n−1
∑

i=0

∫ xi+1

xi

f(x) dx ≈ 1

2

n−1
∑

i=0

(xi+1 − xi) [f(xi) + f(xi+1)] . (10.1)

Since each subinterval has equal width, xi+1 − xi = h, and we have

∫ b

a

f(x) dx ≈ h

2

n−1
∑

i=0

[f(xi) + f(xi+1)] . (10.2)

In your calculus class, you saw this in the less comprehensible form:

∫ b

a

f(x) dx ≈ h
[

f(a) + f(b)

2
+

n−1
∑

i=1

f(xi)

]

.

Note that the composite trapezoidal rule for equal subintervals is the same
as the approximation we found for increasing functions in Example 10.5.



146 CHAPTER 10. INTEGRALS AND QUADRATURE

Example Problem 10.6. Approximate the integral
∫ 2

0

1

1 + x2
dx

by the composite trapezoidal rule with a partition of equally spaced points, for
n = 2. Solution: We have h = 2−0

2 = 1, and f(x0) = 1, f(x1) =
1
2 , f(x2) =

1
5 .

Then the composite trapezoidal rule gives the value

1

2
[f(x0) + f(x1) + f(x1) + f(x2)] =

1

2

[

1 + 1 +
1

5

]

=
11

10
.

The actual value is arctan 2 ≈ 1.107149, and our approximation is correct to
two decimal places. ⊣

10.2.1 How Good is the Composite Trapezoidal Rule?

We consider the composite trapezoidal rule for partitions of equal subintervals.
Let pi(x) be the polynomial of degree ≤ 1 that interpolates f(x) at xi, xi+1. Let

Ii =

∫ xi+1

xi

f(x) dx, Ti =

∫ xi+1

xi

pi(x) dx = (xi+1 − xi)
pi(xi) + pi(xi+1)

2
=
h

2
(f(xi) + f(xi+1)) .

That’s right: the composite trapezoidal rule approximates the integral of
f(x) over [xi, xi+1] by the integral of pi(x) over the same interval.

Now recall our theorem on polynomial interpolation error. For x ∈ [xi, xi+1] ,
we have

f(x)− pi(x) =
1

(2)!
f (2)(ξx) (x− xi) (x− xi+1) ,

for some ξx ∈ [xi, xi+1] . Recall that ξx depends on x. To make things simpler,
call it ξ(x).

Now integrate:

Ii − Ti =
∫ xi+1

xi

f(x)− pi(x) dx =
1

2

∫ xi+1

xi

f ′′(ξ(x)) (x− xi) (x− xi+1) dx.

We will now attack the integral on the right hand side. Recall the following
theorem:

Theorem 10.7 (Mean Value Theorem for Integrals). Suppose f is continuous,
g is Riemann Integrable and does not change sign on [α, β]. Then there is some
ζ ∈ [α, β] such that

∫ β

α

f(x)g(x) dx = f(ζ)

∫ β

α

g(x) dx.

We use this theorem on our integral. Note that (x− xi) (x− xi+1) is non-
positive on the interval of question, [xi, xi+1]. We assume continuity of f ′′(x),
and wave our hands to get continuity of f ′′(ξ(x)). Then we have

Ii − Ti =
1

2
f ′′(ξ)

∫ xi+1

xi

(x− xi) (x− xi+1) dx,



10.2. TRAPEZOIDAL RULE 147

for some ξi ∈ [xi, xi+1]. By boring calculus and algebra, we find that
∫ xi+1

xi

(x− xi) (x− xi+1) dx = −h
3

6
.

This gives

Ii − Ti = −
h3

12
f ′′(ξi),

for some ξi ∈ [xi, xi+1].
We now sum over all subintervals to find the total error of the composite

trapezoidal rule

E =
n−1
∑

i=0

Ii − Ti = −
h3

12

n−1
∑

i=0

f ′′(ξi) = −
(b− a)h2

12

[

1

n

n−1
∑

i=0

f ′′(ξi)

]

.

On the far right we have an average value, 1
n

∑n−1
i=0 f

′′(ξi), which lies between
the least and greatest values of f ′′ on the inteval [a, b], and thus by the IVT,
there is some ξ which takes this value. So

E = − (b− a)h2
12

f ′′(ξ)

This gives us the theorem:

Theorem 10.8 (Error of the Composite Trapezoidal Rule). Let f ′′(x) be con-
tinuous on [a, b]. Let T be the value of the trapezoidal rule applied to f(x) on

this interval with a partition of uniform spacing, h, and let I =
∫ b

a
f(x) dx. Then

there is some ξ ∈ [a, b] such that

I − T = − (b− a)h2
12

f ′′(ξ).

Note that this theorem tells us not only the magnitude of the error, but the
sign as well. Thus if, for example, f(x) is concave up and thus f ′′ is positive,
then I − T will be negative, i.e., the trapezoidal rule gives an overestimate of
the integral I. See Figure 10.3.

10.2.2 Using the Error Bound

Example Problem 10.9. How many intervals are required to approximate the
integral

ln 2 = I =

∫ 1

0

1

1 + x
dx

to within 1 × 10−10? Solution: We have f(x) = 1
1+x , thus f

′(x) = − 1
(1+x)2 .

And f ′′(x) = 2
(1+x)3 . Thus f

′′(ξ) is continuous and bounded by 2 on [0, 1]. If we

use n equal subintervals then Theorem 10.8 tells us the error will be

−1− 0

12

(

1− 0

n

)2

f ′′(ξ) = −f
′′(ξ)

12n2
.



148 CHAPTER 10. INTEGRALS AND QUADRATURE

lleft

uright

xi xi+1

Figure 10.3: The trapezoidal rule is an overestimate for a function which is
concave up, i.e., has positive second derivative.

To make this smaller than 1× 10−10, in absolute value, we need only take

1

6n2
≤ 1× 10−10,

and so n ≥
√

1
6 × 105 suffices. Because f ′′(x) is positive on this interval, the

trapezoidal rule will be an overestimate. ⊣
Example Problem 10.10. How many intervals are required to approximate
the integral

∫ 2

0

x3 − 1 dx

to within 1 × 10−6? Solution: We have f(x) = x3 − 1, thus f ′(x) = 3x2, and
f ′′(x) = 6x. Thus f ′′(ξ) is continuous and bounded by 12 on [0, 2]. If we use n
equal subintervals then by Theorem 10.8 the error will be

−2− 0

12

(

2− 0

n

)2

f ′′(ξ) = −2f ′′(ξ)

3n2
.

To make this smaller than 1× 10−6, in absolute value, it suffices to take

24

3n2
≤ 1× 10−6,

and so n ≥
√
8 × 103 suffices. Because f ′′(x) is positive on this interval, the

trapezoidal rule will be an overestimate. ⊣

10.3 Romberg Algorithm

Theorem 10.8 tells us, approximately, that the error of the composite trapezoidal
rule approximation is O

(

h2
)

. If we halve h, the error is quartered. Sometimes



10.3. ROMBERG ALGORITHM 149

we want to do better than this. We’ll use the same trick that we did from
Richardson extrapolation. In fact, the forms are exactly the same.

Towards this end, suppose that f, a, b are given. For a given n, we are going
to use the trapezoidal rule on a partition of 2n equal subintervals of [a, b]. That
is h = b−a

2n . Then define

φ(n) =
1

2

b− a
2n

2n−1
∑

i=0

f(xi) + f(xi+1)

=
b− a
2n

[

f(a)

2
+
f(b)

2
+

2n−1
∑

i=1

f

(

a+ i
b− a
2n

)

]

.

The intervals used to calculate φ(n + 1) are half the size of those for φ(n). As
mentioned above, this means the error is one quarter.

It turns out that if we had proved the error theorem differently, we would
have proved the relation:

φ(n) =

∫ b

a

f(x) dx+ a2h
2
n + a4h

4
n + a6h

6
n + a8h

8
n + . . . ,

where hn = b−a
2n . The constants ai are a function of f (i)(x) only. This should

look just like something from Chapter 9. What happens if we now calculate
φ(n+ 1)? We have

φ(n+ 1) =

∫ b

a

f(x) dx + a2h
2
n+1 + a4h

4
n+1 + a6h

6
n+1 + a8h

8
n+1 + . . . ,

=

∫ b

a

f(x) dx +
1

4
a2h

2
n +

1

16
a4h

4
n +

1

64
a6h

6
n +

1

256
a8h

8
n + . . . .

This happens because hn+1 = b−a
2n+1 = 1

2
b−a
2n = hn

2 . As with Richardon’s method
for approximating derivatives, we now combine the right multiples of these:

φ(n)− 4φ(n+ 1) = −3
∫ b

a

f(x) dx +
3

4
4h4n +

15

16
a6h

6
n +

63

64
a8h

8
n + . . .

4φ(n)− φ(n+ 1)

3
=

∫ b

a

f(x) dx − 1

4
4h4n −

5

16
a6h

6
n −

21

64
a8h

8
n + . . .

This approximation has a truncation error of O
(

h4n
)

.
Like in Richardson’s method, we can use this to get better and better ap-

proximations to the integral. We do this by constructing a triangular array of
approximations, each entry depending on two others. Towards this end, we let

R(n, 0) = φ(n),

then define, for m > 0

R(n,m) =
4mR(n,m− 1)−R(n− 1,m− 1)

4m − 1
. (10.3)



150 CHAPTER 10. INTEGRALS AND QUADRATURE

The familiar pyramid table then is:

R(0, 0)
R(1, 0) R(1, 1)
R(2, 0) R(2, 1) R(2, 2)

...
...

...
. . .

R(n, 0) R(n, 1) R(n, 2) · · · R(n, n)

Even though this is exactly the same as Richardon’s method, it has another
name: this is called the Romberg Algorithm.

Example Problem 10.11. Approximating the integral

∫ 2

0

1

1 + x2
dx

by Romberg’s Algorithm; find R(1, 1). Solution: The first column is calculated
by the trapezoidal rule. Successive columns are found by combining members
of previous columns. So we first calculate R(0, 0) and R(1, 0). These are fairly
simple, the first is the trapezoidal rule on a single subinterval, the second is the
trapezoidal rule on two subintervals. Then

R(0, 0) =
2− 0

1

1

2
[f(0) + f(2)] =

6

5
,

R(1, 0) =
2− 0

2

1

2
[f(0) + f(1) + f(1) + f(2)] =

11

10
.

Then, using Romberg’s Algorithm we have

R(1, 1) =
4R(1, 0)−R(0, 0)

4− 1
=

44
10 − 12

10

3
=

32

30
= 1.06̄.

⊣

At this point we are tempted to use Richardson’s analysis. This would claim

that R(n, n) is a O
(

h
2(n+1)
0

)

approximation to the integral. However, h0 =

b− a, and need not be smaller than 1. This is a bit different from Richardson’s
method, where the original h is independently set before starting the triangular
array; for Romberg’s algorithm, h0 is determined by a and b.

We can easily deal with this problem by picking some k such that b−a
2k is

small enough, say smaller than 1. Then calculating the following array:

R(k, 0)
R(k + 1, 0) R(k + 1, 1)
R(k + 2, 0) R(k + 2, 1) R(k + 2, 2)

...
...

...
. . .

R(k + n, 0) R(k + n, 1) R(k + n, 2) · · · R(k + n, n)



10.3. ROMBERG ALGORITHM 151

Quite often Romberg’s Algorithm is used to compute columns of this array.
Subtractive cancelling or unbounded higher derivatives of f(x) can make suc-
cessive approximations less accurate. For this reason, entries in ever rightward
columns are usually not calculated, rather lower entries in a single column are
calculated instead. That is, the user calculates the array:

R(k, 0)
R(k + 1, 0) R(k + 1, 1)
R(k + 2, 0) R(k + 2, 1) R(k + 2, 2)

...
...

...
. . .

R(k + n, 0) R(k + n, 1) R(k + n, 2) · · · R(k + n, n)
R(k + n+ 1, 0) R(k + n+ 1, 1) R(k + n+ 1, 2) · · · R(k + n+ 1, n)
R(k + n+ 2, 0) R(k + n+ 2, 1) R(k + n+ 2, 2) · · · R(k + n+ 2, n)
R(k + n+ 3, 0) R(k + n+ 3, 1) R(k + n+ 3, 2) · · · R(k + n+ 3, n)

...
...

...
...

Then R(k + n+ l, n) makes a fine approximation to the integral as l → ∞.
Usually n is small, like 2 or 3.

10.3.1 Recursive Trapezoidal Rule

It turns out there is an efficient way of calculating R(n + 1, 0) given R(n, 0);
first notice from the above example that

R(0, 0) =
b− a
1

1

2
[f(a) + f(b)] ,

R(1, 0) =
b− a
2

1

2

[

f(a) + f(
a+ b

2
) + f(

a+ b

2
) + f(b)

]

.

It would be best to calculate R(1, 0) without recalculating f(a) and f(b). It
turns out this is possible. Let hn = b−a

2n , and recall that

R(n, 0) = φ(n) = hn

[

f(a) + f(b)

2
+

2n−1
∑

i=1

f (a+ ihn)

]

.



152 CHAPTER 10. INTEGRALS AND QUADRATURE

Thus

R(n+ 1, 0) = φ(n+ 1) = hn+1





f(a) + f(b)

2
+

2n+1−1
∑

i=1

f (a+ ihn+1)



 ,

=
1

2
hn

[

f(a) + f(b)

2
+

2n−1
∑

i=1

f (a+ (2i− 1)hn+1) + f

(

a+ (2i)
1

2
hn

)

]

,

=
1

2
hn

[

f(a) + f(b)

2
+

2n−1
∑

i=1

f (a+ ihn) +
2n−1
∑

i=1

f (a+ (2i− 1)hn+1)

]

,

=
1

2
R(n, 0) + hn+1

2n−1
∑

i=1

f (a+ (2i− 1)hn+1) .

Then calculating R(n + 1, 0) requires only 2n − 1 additional evaluations of
f(x), instead of the 2n+1 + 1 usually required.

10.4 Gaussian Quadrature

The word quadrature refers to a method of approximating the integral of a
function as the linear combination of the function at certain points, i.e.,

∫ b

a

f(x) dx ≈ A0f(x0) +A1f(x1) + . . . Anf(xn), (10.4)

for some collection of nodes {xi}ni=0, and weights {Ai}ni=0. Normally one finds
the nodes and weights in a table somewhere; we expect a quadrature rule with
more nodes to be more accurate in some sense–the tradeoff is in the number of
evaluations of f(·). We will examine how these rules are created.

10.4.1 Determining Weights (Lagrange Polynomial Method)

Suppose that the nodes {xi}ni=0 are given. An easy way to find “good” weights
{Ai}ni=0 for these nodes is to rig them so the quadrature rule gives the integral
of p(x), the polynomial of degree ≤ n which interpolates f(x) on these nodes.
Recall

p(x) =

n
∑

i=0

f(xi)ℓi(x),

where ℓi(x) is the ith Lagrange polynomial. Thus our rigged approximation is
the one that gives

∫ b

a

f(x) dx ≈
∫ b

a

p(x) dx =

n
∑

i=0

f(xi)

∫ b

a

ℓi(x) dx.



10.4. GAUSSIAN QUADRATURE 153

If we let

Ai =

∫ b

a

ℓi(x) dx,

then we have a quadrature rule.

If f(x) is a polynomial of degree ≤ n then f(x) = p(x), and the quadrature
rule is exact.

Example Problem 10.12. Construct a quadrature rule on the interval [0, 4]
using nodes 0, 1, 2. Solution: The nodes are given, we determine the weights by
constructing the Lagrange Polynomials, and integrating them.

ℓ0(x) =
(x − 1)(x− 2)

(0 − 1)(0− 2)
=

1

2
(x − 1)(x− 2),

ℓ1(x) =
(x − 0)(x− 2)

(1 − 0)(1− 2)
= −(x)(x − 2),

ℓ2(x) =
(x − 0)(x− 1)

(2 − 0)(2− 1)
=

1

2
(x)(x − 1).

Then the weights are

A0 =

∫ 4

0

ℓ0(x) dx =

∫ 4

0

1

2
(x− 1)(x− 2) dx =

8

3
,

A1 =

∫ 4

0

ℓ1(x) dx =

∫ 4

0

−(x)(x − 2) dx = −16

3
,

A2 =

∫ 4

0

ℓ2(x) dx =

∫ 4

0

1

2
(x)(x − 1) dx =

20

3
.

Thus our quadrature rule is

∫ 4

0

f(x) dx ≈ 8

3
f(0)− 16

3
f(1) +

20

3
f(2).

We expect this rule to be exact for a quadratic function f(x). To illustrate
this, let f(x) = x2 + 1. By calculus we have

∫ 4

0

x2 + 1 dx =
1

3
x3 + x

∣

∣

∣

∣

4

0

=
64

3
+ 4 =

76

3
.

The approximation is

∫ 4

0

x2 + 1 dx ≈ 8

3
[0 + 1]− 16

3
[1 + 1] +

20

3
[4 + 1] =

76

3
.

⊣



154 CHAPTER 10. INTEGRALS AND QUADRATURE

10.4.2 Determining Weights (Method of Undetermined
Coefficients)

Using the Lagrange Polynomial Method to find the weights Ai is fine for a
computer, but can be tedious (and error-prone) if done by hand (say, on an
exam). The method of undetermined coefficients is a good alternative for finding
the weights by hand, and for small n.

The idea behind the method is to find n + 1 equations involving the n + 1
weights. The equations are derived by letting the quadrature rule be exact for
f(x) = xj for j = 0, 1, . . . , n. That is, setting

∫ b

a

xj dx =

n
∑

i=0

Ai(xi)
j .

For example, we reconsider Example Problem 10.12.

Example Problem 10.13. Construct a quadrature rule on the interval [0, 4]
using nodes 0, 1, 2. Solution: The method of undetermined coefficients gives the
equations:

∫ 4

0

1 dx = 4 = A0 +A1 +A2

∫ 4

0

xdx = 8 = A1 + 2A2

∫ 4

0

x2 dx = 64/3 = A1 + 4A2.

We perform Näıve Gaussian Elimination on the system:





1 1 1 4
0 1 2 8
0 1 4 64/3





We get the same weights as in Example Problem 10.12: A2 = 20
3 , A1 = − 16

3 , A0 =
8
3 . ⊣

Notice the difference compared to the Lagrange Polynomial Method: un-
determined coefficients requires solution of a linear system, while the former
method calculates the weights “directly.” Since we will not consider n to be
very large, solving the linear system may not be too burdensome.

Moreover, the method of undetermined coefficients is useful in more general
settings, as illustrated by the next example:

Example Problem 10.14. Determine a “quadrature” rule of the form

∫ 1

0

f(x) dx ≈ Af(1) +Bf ′(1) + Cf ′′(1)



10.4. GAUSSIAN QUADRATURE 155

that is exact for polynomials of highest possible degree. What is the highest
degree polynomial for which this rule is exact? Solution: Since there are
three unknown coefficients to be determined, we look for three equations. We
get these equations by plugging in successive polynomials. That is, we plug in
f(x) = 1, x, x2 and assuming the coefficients give equality:

∫ 1

0

1 dx = 1 = A 1 +B 0 + C 0 = A

∫ 1

0

xdx = 1/2 = A 1 +B 1 + C 0 = A+B

∫ 1

0

x2 dx = 1/3 = A 1 +B 2 + C 2 = A+ 2B + 2C

This is solved by A = 1, B = −1/2, C = 1/6. This rule should be exact for
polynomials of degree no greater than 2, but it might be better. We should check:

∫ 1

0

x3 dx = 1/4 6= 1/2 = 1− 3/2 + 1 = A 1 +B 3 + C 6,

and thus the rule is not exact for cubic polynomials, or those of higher degree.
⊣

10.4.3 Gaussian Nodes

It would seem this is the best we can do: using n + 1 nodes we can devise a
quadrature rule that is exact for polynomials of degree ≤ n by choosing the
weights correctly. It turns out that by choosing the nodes in the right way, we
can do far better. Gauss discovered that the right nodes to choose are the n+1
roots of the (nontrivial) polynomial, q(x), of degree n+1 which has the property

∫ b

a

xkq(x) dx = 0 (0 ≤ k ≤ n) .

(If you view the integral as an inner product, you could say that q(x) is orthog-
onal to the polynomials xk in the resultant inner product space, but that’s just
fancy talk.)

Suppose that we have such a q(x)–we will not prove existence or uniqueness.
Let f(x) be a polynomial of degree ≤ 2n+ 1. We write

f(x) = p(x)q(x) + r(x).

Both p(x), r(x) are of degree ≤ n. Because of how we picked q(x) we have

∫ b

a

p(x)q(x) dx = 0.

Thus
∫ b

a

f(x) dx =

∫ b

a

p(x)q(x) dx +

∫ b

a

r(x)dx =

∫ b

a

r(x)dx.



156 CHAPTER 10. INTEGRALS AND QUADRATURE

Now suppose that the Ai are chosen by Lagrange Polynomials so the quadra-
ture rule on the nodes xi is exact for polynomials of degree ≤ n. Then

n
∑

i=0

Aif(xi) =

n
∑

i=0

Ai [p(xi)q(xi) + r(xi)] =

n
∑

i=0

Air(xi).

The last equality holds because the xi are the roots of q(x). Because of how the
Ai are chosen we then have

n
∑

i=0

Aif(xi) =

n
∑

i=0

Air(xi) =

∫ b

a

r(x) dx =

∫ b

a

f(x) dx.

Thus this rule is exact for f(x).We have (or rather, Gauss has) made quadra-
ture twice as good.

Theorem 10.15 (Gaussian Quadrature Theorem). Let xi be the n+1 roots of
a (nontrivial) polynomial, q(x), of degree n+ 1 which has the property

∫ b

a

xkq(x) dx = 0 (0 ≤ k ≤ n) .

Let Ai be the coefficients for these nodes chosen by integrating the Lagrange
Polynomials. Then the quadrature rule for this choice of nodes and coefficients
is exact for polynomials of degree ≤ 2n+ 1.

10.4.4 Determining Gaussian Nodes

We can determine the Gaussian nodes in the same way we determine coefficients.
The example is illustrative

Example Problem 10.16. Find the two Gaussian nodes for a quadrature rule
on the interval [0, 2]. Solution: We will find the function q(x) of degree 2,
which is “orthogonal” to 1, x under the inner product of integration over [0, 2].
Thus we let q(x) = c0 + c1x+ c2x

2. The orthogonality condition becomes

∫ 2

0

1q(x) dx =

∫ 2

0

xq(x) dx = 0 that is,

∫ 2

0

c0 + c1x+ c2x
2 dx =

∫ 2

0

c0x+ c1x
2 + c2x

3 dx = 0

Evaluating these integrals gives the following system of linear equations:

2c0 + 2c1 +
8

3
c2 = 0,

2c0 +
8

3
c1 + 4c2 = 0.

This system is “underdetermined,” that is, there are two equations, but three
unknowns. Notice, however, that if q(x) satisfies the orthogonality conditions,



10.4. GAUSSIAN QUADRATURE 157

then so does q̂(x) = αq(x), for any real number α. That is, we can pick the
scaling of q(x) as we wish.

With great foresight, we “guess” that we want c2 = 3. This reduces the
equations to

2c0 + 2c1 = −8,

2c0 +
8

3
c1 = −12.

Simple Gaussian Elimination ( cf. Chapter 7) yields the answer c0 = 2, c1 =
−6, c2 = 3.

Then our nodes are the roots of q(x) = 2− 6x+ 3x2. That is the roots

6±
√
36− 24

6
= 1±

√
3

3
.

These nodes are a bit ugly. Rather than construct the Lagrange Polynomials,
we will use the method of undetermined coefficients. Remember, we want to
construct A0, A1 such that

∫ 2

0

f(x) dx ≈ A0f(1−
√
3

3
) +A1f(1 +

√
3

3
)

is exact for polynomial f(x) of degree ≤ 1. It suffices to make this approximation
exact for the “building blocks” of such polynomials, that is, for the functions 1
and x. That is, it suffices to find A0, A1 such that

∫ 2

0

1 dx = A0 +A1

∫ 2

0

xdx = A0(1−
√
3

3
) +A1(1 +

√
3

3
)

This gives the equations

2 = A0 +A1

2 = A0(1−
√
3

3
) +A1(1 +

√
3

3
)

This is solved by A0 = A1 = 1.

Thus our quadrature rule is

∫ 2

0

f(x) dx ≈ f(1−
√
3

3
) + f(1 +

√
3

3
) .

We expect this rule to be exact for cubic polynomials. ⊣



158 CHAPTER 10. INTEGRALS AND QUADRATURE

Example Problem 10.17. Verify the results of the previous example problem
for f(x) = x3. Solution: We have

∫ 2

0

f(x) dx = (1/4) x4
∣

∣

∣

2

0
= 4.

The quadrature rule gives

f(1−
√
3

3
) + f(1 +

√
3

3
) =

(

1−
√
3

3

)3

+

(

1 +

√
3

3

)3

=

(

1− 3

√
3

3
+ 3

3

9
− 3
√
3

27

)

+

(

1 + 3

√
3

3
+ 3

3

9
+

3
√
3

27

)

=
(

2−
√
3−
√
3/9
)

+
(

2 +
√
3 +
√
3/9
)

= 4

Thus the quadrature rule is exact for f(x). ⊣

10.4.5 Reinventing the Wheel

While it is good to know the theory, it doesn’t make sense in practice to recom-
pute these things all the time. There are books full of quadrature rules; any
good textbook will list a few. The simplest ones are given in Table 10.1.
See also http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

n xi Ai

0 x0 = 0 A0 = 2

1
x0 = −

√

1/3 A0 = 1

x1 =
√

1/3 A1 = 1

x0 = −
√

3/5 A0 = 5/9
2 x1 = 0 A1 = 8/9

x2 =
√

3/5 A1 = 5/9

Table 10.1: Gaussian Quadrature rules for the interval [−1, 1]. Thus
∫ 1

−1 f(x) dx ≈
∑n

i=0 Aif(xi), with this relation holding exactly for all poly-
nomials of degree no greater than 2n+ 1.

Quadrature rules are normally given for the interval [−1, 1]. On first consid-
eration, it would seem you need a different rule for each interval [a, b]. This is
not the case, as the following example problem illustrates:

Example Problem 10.18. Given a quadrature rule which is good on the inter-
val [−1, 1], derive a version of the rule to apply to the interval [a, b]. Solution:
Consider the substitution:

x =
b− a
2

t+
b+ a

2
, so dx =

b− a
2

dt.



10.4. GAUSSIAN QUADRATURE 159

Then
∫ b

a

f(x) dx =

∫ 1

−1

f

(

b− a
2

t+
b+ a

2

)

b− a
2

dt.

Letting

g(t) =
b− a
2

f

(

b− a
2

t+
b+ a

2

)

,

if f(x) is a polynomial, g(t) is a polynomial of the same degree. Thus we can
use the quadrature rule for [−1, 1] on g(t) to evaluate the integral of f(x) over
[a, b]. ⊣

Example Problem 10.19. Derive the quadrature rules of Example Prob-
lem 10.16 by using the technique of Example Problem 10.18 and the quadrature
rules of Table 10.1. Solution: We have a = 0, b = 2. Thus

g(t) =
b− a
2

f

(

b− a
2

t+
b+ a

2

)

= f(t+ 1).

To integrate f(x) over [0, 2], we integrate g(t) over [−1, 1]. The standard Gaus-
sian Quadrature rule approximates this as

∫ 1

−1

g(t) dt ≈ g(−
√

1/3) + g(
√

1/3) = f(1−
√

1/3) + f(1 +
√

1/3).

This is the same rule that was derived (with much more work) in Example
Problem 10.16. ⊣



160 CHAPTER 10. INTEGRALS AND QUADRATURE

Exercises

(10.1) Use the composite trapezoidal rule, by hand, to approximate

∫ 3

0

x2 dx (= 9)

Use the partition {xi}2i=0 = {0, 1, 3} . Why is your approximation an
overestimate?

(10.2) Use the composite trapezoidal rule, by hand, to approximate

∫ 1

0

1

x+ 1
dx (= ln 2 ≈ 0.693)

Use the partition {xi}3i=0 =
{

0, 14 ,
1
2 , 1
}

. Why is your approximation an
overestimate? (Check: I think the answer is 0.7)

(10.3) Use the composite trapezoidal rule, by hand to approximate

∫ 1

0

4

1 + x2
dx.

Use n = 4 subintervals. How good is your answer?
(10.4) Use Theorem 10.8 to bound the error of the composite trapezoidal rule

approximation of
∫ 2

0 x
3 dx with n = 10 intervals. You should find that

the approximation is an overestimate.

(10.5) Howmany equal subintervals of [0, 1] are required to approximate
∫ 1

0
cosx dx

with error smaller than 1×10−6 by the composite trapezoidal rule? (Use
Theorem 10.8.)

(10.6) How many equal subintervals would be required to approximate

∫ 1

0

4

1 + x2
dx.

to within 0.0001 by the composite trapezoidal rule? (Hint: Use the fact
that |f ′′(x)| ≤ 8 on [0, 1] for f(x) = 4/(1 + x2))

(10.7) Howmany equal subintervals of [2, 3] are required to approximate
∫ 3

2 e
x dx

with error smaller than 1× 10−3 by the composite trapezoidal rule?
(10.8) Simpson’s Rule for quadrature is given as

∫ b

a

f(x) dx ≈ ∆x

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)] ,

where ∆x = (b−a)/n, and n is assumed to be even. Show that Simpson’s
Rule for n = 2 is actually given by Romberg’s Algorithm as R(1, 1). As
such we expect Simpson’s Rule to be a O

(

h4
)

approximation to the
integral.



10.4. GAUSSIAN QUADRATURE 161

(10.9) Find a quadrature rule of the form

∫ 1

0

f(x) dx ≈ Af(0) +Bf(1/2) + Cf(1)

that is exact for polynomials of highest possible degree. What is the
highest degree polynomial for which this rule is exact?

(10.10) Determine a “quadrature” rule of the form

∫ 1

−1

f(x) dx ≈ Af(0) +Bf ′(−1) + Cf ′(1)

that is exact for polynomials of highest possible degree. What is the
highest degree polynomial for which this rule is exact? (Since this rule
uses derivatives of f, it does not exactly fit our definition of a quadrature
rule, but it may be applicable in some situations.)

(10.11) Determine a “quadrature” rule of the form

∫ 1

0

f(x) dx ≈ Af(0) +Bf ′(0) + Cf(1)

that is exact for polynomials of highest possible degree. What is the
highest degree polynomial for which this rule is exact?

(10.12) Consider the so-called order n Chebyshev Quadrature rule:

∫ 1

−1

f(x) dx ≈ cn
n
∑

i=0

f(xi)

Find the weighting cn and nodes xi for the case n = 2 and the case n = 3.
For what order polynomials are these rules exact?

(10.13) Find the Gaussian Quadrature rule with 2 nodes for the interval [1, 5],
i.e., find a rule

∫ 5

1

f(x) dx ≈ Af(x0) +Bf(x1)

Before you solve the problem, consider the following questions: do you
expect the nodes to be the endpoints 1 and 5? do you expect the nodes
to be arranged symmetrically around the midpoint of the interval?

(10.14) Find the Gaussian Quadrature rule with 3 nodes for the interval [−1, 1],
i.e., find a rule

∫ 1

−1

f(x) dx ≈ Af(x0) +Bf(x1) + Cf(x2)

To find the nodes x0, x1, x2 you will have to find the zeroes of a cubic
equation, which could be difficult. However, you may use the simplify-
ing assumption that the nodes are symmetrically placed in the interval
[−1, 1].



162 CHAPTER 10. INTEGRALS AND QUADRATURE

(10.15) Write code to approximate the integral of a f on [a, b] by the composite
trapezoidal rule on n equal subintervals. Your m-file should have header
line like:
function iappx = trapezoidal(f,a,b,n)

You may wish to use the code:
x = a .+ (b-a) .* (0:n) ./ n;

If f is defined to work on vectors element-wise, you can probably speed
up your computation by using
bigsum = 0.5 * ( f(x(1)) + f(x(n+1)) ) + sum( f(x(2:(n))) );

(10.16) Write code to implement the Gaussian Quadrature rule for n = 2 to
integrate f on the interval [a, b]. Your m-file should have header line
like:
function iappx = gauss2(f,a,b)

(10.17) Write code to implement composite Gaussian Quadrature based on code
from the previous problem. Something like the following probably works:
function iappx = gaussComp(f,a,b,n)

% code to approximate integral of f over n equal subintervals of [a,b]

x = a .+ (b-a) .* (0:n) ./ n;

iappx = 0;

for i=1:n

iappx += gauss2(f,x(i),x(i+1));

end

Use your code to approximate the error function:

erf(z) =
2√
π

∫ z

0

e−t2 dt.

Compare your results with SciPy’s builtin function erf. (See http://mathworld.wolfram.com/Erf.
The error function is used in probability. In particular, the probability
that a normal random variable is within z standard deviations from its
mean is

erf(z/
√
2)

Thus erf(1/
√
2) ≈ 0.683, and erf(2/

√
2) ≈ 0.955. These numbers should

look familiar to you.



Chapter 11

Ordinary Differential
Equations

Ordinary Differential Equations, or ODEs, are used in approximating some
physical systems. Some classical uses include simulation of the growth of popu-
lations and trajectory of a particle. They are usually easier to solve or approx-
imate than the more general Partial Differential Equations, PDEs, which can
contain partial derivatives.

Much of the background material of this chapter should be familiar to the
student of calculus. We will focus more on the approximation of solutions, than
on analytical solutions. For more background on ODEs, see any of the standard
texts, e.g., [?].

11.1 Elementary Methods

A one-dimensional ODE is posed as follows: find some function x(t) such that
{

dx(t)
dt = f (t, x(t)) ,

x(a) = c.
(11.1)

In calculus classes, you probably studied the case where f (t, x(t)) is independent
of its second variable. For example the ODE given by

{

dx(t)
dt = t2 − t,

x(a) = c.

has solution x(t) = 1
3 t

3 − 1
2 t

2 +K, where K is chosen such that x(a) = c.
A more general case is when f(t, x) is separable, that is f(t, x) = g(t)h(x)

for some functions g, h. You may recall that the solution to such a separable
ODE usually involved the following equation:

∫

dx

h(x)
=

∫

g(t) dt

163



164 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

Finding an analytic solution can be considerably more difficult in the general
case, thus we turn to approximation schemes.

11.1.1 Integration and ‘Stepping’

We attempt to solve the ODE by integrating both sides. That is

dx(t)

dt
= f (t, x(t)) , yields

∫ t+h

t

dx =

∫ t+h

t

f (r, x(r)) dr, thus

x(t+ h) = x(t) +

∫ t+h

t

f (r, x(r)) dr. (11.2)

If we can approximate the integral then we have a way of ‘stepping’ from t to
t+ h, i.e., if we have a good approximate of x(t) we can approximate x(t+ h).
Note that this means that all the work we have put into approximating integrals
can be used to approximate the solution of ODEs.

Using stepping schemes we can approximate x(tfinal) given x(tinitial) by
taking a number of steps. For simplicity we usually use the same step size, h,
for each step, though nothing precludes us from varying the step size.

If we apply the left-hand rectangle rule for approximating integrals to equa-
tion 11.2, we get

x(t+ h) ≈ x(t) + hf(t, x(t)). (11.3)

This is called Euler’s Method. Note this is essentially the same as the “forward
difference” approximation we made to the derivative, equation 9.1.

Trapezoid rule gives

x(t+ h) ≈ x(t) + h

2
[f(t, x(t)) + f(t+ h, x(t+ h))] .

But we cannot evaluate this exactly, since x(t+ h) appears on both sides of the
equation. And it is embedded on the right hand side. Bummer. But if we could
approximate it, say by using Euler’s Method, maybe the formula would work.
This is the idea behind the Runge-Kutta Method (see Section 11.2).

11.1.2 Taylor’s Series Methods

We see that our more accurate integral approximations will be useless since they
require information we do not know, i.e., evaluations of f(t, x) for yet unknown
x values. Thus we fall back on Taylor’s Theorem (Theorem 2.6). We can also
view this as using integral approximations where all information comes from the
left-hand endpoint.



11.1. ELEMENTARY METHODS 165

By Taylor’s theorem, if x has at least m + 1 continuous derivatives on the
interval in question, we can write

x(t+h) = x(t)+hx′(t)+
1

2
h2x′′(t)+. . .+

1

m!
hmx(m)(t)+

1

(m+ 1)!
hm+1x(m+1)(τ),

where τ is between t and t+h. Since τ is essentially unknown, our best calculable
approximation to this expression is

x(t+ h) ≈ x(t) + hx′(t) +
1

2
h2x′′(t) + . . .+

1

m!
hmx(m)(t).

This approximate solution to the ODE is called a Taylor’s series method of order
m. We also say that this approximation is a truncation of the Taylor’s series.
The difference between the actual value of x(t + h), and this approximation is
called the truncation error. The truncation error exists independently from any
error in computing the approximation, called roundoff error. We discuss this
more in Subsection ??.

11.1.3 Euler’s Method

When m = 1 we recover Euler’s Method:

x(t + h) = x(t) + hx′(t) = x(t) + hf(t, x(t)).

Example 11.1. Consider the ODE
{

dx(t)
dt = x,
x(0) = 1.

The actual solution is x(t) = et. Euler’s Method will underestimate x(t) because
the curvature of the actual x(t) is positive, and thus the function is always above
its linearization. In Figure 11.1, we see that eventually the Euler’s Method
approximation is very poor.

11.1.4 Higher Order Methods

Higher order methods are derived by taking more terms of the Taylor’s series
expansion. Note however, that they will require information about the higher
derivatives of x(t), and thus may not be appropriate for the case where f(t, x)
is given as a “black box” function.

Example Problem 11.2. Derive the Taylor’s series method for m = 3 for the
ODE

{

dx(t)
dt = x+ ex,
x(0) = 1.

Solution: By simple calculus:

x′(t) = x+ ex

x′′(t) = x′ + exx′

x′′′(t) = x′′ (1 + ex) + x′exx′



166 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  0.5  1  1.5  2  2.5  3

Euler approximation
Actual

Figure 11.1: Euler’s Method applied to approximate x′ = x, x(0) = 1. Each
step proceeds on the linearization of the curve, and is thus an underestimate,
as the actual solution, x(t) = et has positive curvature. Here step size h = 0.3
is used.

We can then write our step like a program:

x′(t)← x(t) + ex(t)

x′′(t)← x′(t)
(

1 + ex(t)
)

x′′′(t)← x′′(t)
(

1 + ex(t)
)

+ (x′(t))
2
ex(t)

x(t+ h) ≈ x(t) + hx′(t) +
1

2
h2x′′(t) +

1

6
h3x′′′(t)

⊣

11.1.5 A basic error estimate

Let’s try to get a grip on how much error is introduced in each step of the
Euler method. That is, suppose we already know xi−1 and we compute xi by
xi = xi−1 + f (ti−1, xi−1)h.

Recall that xi is our approximation of x (ti). Expanding x out in a Taylor
series about ti−1 we get

x (ti) = x (ti−1) + x′ (ti−1)h+
1

2
x′′(ξ)h2

for some ξ ∈ [ti−1, ti].
Thus, the error in one step is proportional to h2. Now, if we apply Euler’s

method over an interval [a, b], then we take approximately (b−a)/h steps. Thus



11.1. ELEMENTARY METHODS 167

the error is proportional to h. In particular, the error approaches 0 with the
step size.

11.1.6 Error theorems

Since Taylor’s theorem was applied to an unknown function x in the prior dis-
cussion, it can be a bit tricky to obtain an apriori bound on the error generated
by Euler’s method. Using the fact that x′ = f(t, x), however, we get that
x′′ = ft + fxx

′ = ft + fxf from the multi-variable chain rule. Thus, it can be
done. Here are a couple of theorems to that effect.

Theorem 11.1.1. Suppose that f has continuous partial derivatives on the
rectangle R = [0, T ]× [A,B] in the tx-plane. Suppose also that

M1 = sup
R

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

<∞

and

M2 = sup
R

∣

∣

∣

∣

∂f

∂t
+ f

∂f

∂x

∣

∣

∣

∣

<∞.

Finally (and notably), suppose that the solution x to problem (1) satisfies
A ≤ x(t) ≤ B for all t ∈ [0, T ]. Then the global error associated with Euler’s
method satisfies

|y (ti)− yi| ≤
(

eTM1 − 1

2M1

)

M2h,

for each i = 1, 2, . . . , n.

The obvious problem with theorem 11.1.1 is that it still requires knowledge of
the function x to be solved for. It does not require much information, however,
so it can be useful. A strong conclusion under stronger assumptions is offered
via the following theorem.

Theorem 11.1.2. Suppose that f has continuous partial derivatives on the strip
S = [0, T ]× [−∞,∞] in the tx-plane. Suppose that

M1 = sup
S

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

<∞

and

M2 = sup
S

∣

∣

∣

∣

∂f

∂t
+ f

∂f

∂x

∣

∣

∣

∣

<∞.

Then the global error associated with Euler’s method satisfies

|y (ti)− yi| ≤
(

eTM1 − 1

2M1

)

M2h,

for each i = 1, 2, . . . , n.



168 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

11.1.7 Examples

Example 1

Consider the IVP x′ = x, x(0) = 1. Of course, the solution is x(t) = et so we
have something to compare to. Suppose we want to approximate the solution
over [0, 2] with Euler’s method and we want to ensure that we are within 0.01
of the actual value. How large should n be?

First note that f(t, x) = x, so ft = 0 and fx = 1. Thus, M1 = 1. Unfortu-
nately, to obtain a bound on M2, we need to know how large x can be. This
is essentially what we’re trying to find in the first place! Nonetheless, let us
assume that x never grows larger than 10. (In fact, we know that x never grows
larger than e2 ≈ 7.389 on this interval.) Then M2 = 10 so we need

e2 − 1

2
10h ≤ 10−2

or h < 0.000313. Thus n = ⌈2/h⌉ < 6400 will do.
In practice the bound for M2 can frequently be obtained via an initial crude

run of Euler’s method.

Example 2

We now consider the IVP x′ = −sint(t) sin(x)e−x2

, x(0) = 1. We’d like to
approximate the solution over the interval [0, 4] and obtain a solution that is
good to within 0.01 of the actual value. How many pieces do we need and how
do we do it?

Perhaps this is not the prettiest ODE you’ve ever seen, but keep in mind that
we’ll determine much relevant information (such as M1 and M2) numerically.
The key point we’re trying to understand is application of the error bound
inequalities. From this perspective, the e−x2

term is very nice since it converges
to zero very rapidly as u→ ±∞, forcing the partial derivatives of f(t, x) to be
globally bounded.

In order to determine M1 and M2, we simply graphf fx and ft + ffx as
shown in figure 11.2. It appears that the maximum of |fx| is about 1 and that
the maximum of |ft + ffx| is about 0.4.

Thus, we can take M1 = 1 and M2 = 0.4 to get

e2 − 1

2
0.4h ≤ 10−2

or h < 0.00782. Thus, we can take n = ⌈4/0.00782⌉< 520.

11.1.8 Stability

Suppose you had an exact method of solving an ODE, but had the wrong data.
That is, you were trying to solve

{

dx(t)
dt = f (t, x(t)) ,

x(a) = c,



11.1. ELEMENTARY METHODS 169

Figure 11.2: The graphs of fx (top) and ft + ffx (bottom)



170 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

but instead fed the wrong data into the computer, which then solved exactly
the ODE

{

dx(t)
dt = f (t, x(t)) ,

x(a) = c+ ǫ.

This solution can diverge from the correct one because of the different starting
conditions. We illustrate this with the usual example.

Example 11.3. Consider the ODE

dx(t)

dt
= x.

This has solution x(t) = x(0)et. The curves for different starting conditions
diverge, as in Figure 11.3a.

However, if we instead consider the ODE

dx(t)

dt
= −x,

which has solution x(t) = x(0)e−t, we see that differences in the initial condi-
tions become immaterial, as in Figure 11.3b.

Thus the latter ODE exhibits stability: roundoff and truncation errors ac-
crued at a given step will become irrelevant as more steps are taken. The former
ODE exhibits the opposite behavior–accrued errors will be amplified.

It turns out there is a simple test for stability. If fx > δ for some positive
δ, then the ODE is instable; if fx < −δ for a positive δ, the equation is stable.
Some ODEs fall through this test, however.

We can prove this without too much pain. Define x(t, s) to be the solution
to

{

dx(t)
dt = f (t, x(t)) ,

x(a) = s,

for t ≥ a.
Then instability means that

lim
t→∞

∣

∣

∣

∣

∂

∂s
x(t, s)

∣

∣

∣

∣

=∞.

Think about this in terms of the curves for our simple example x′ = x.
If we take the derivative of the ODE we get

∂

∂t
x(t, s) = f(t, x(t, s)),

∂

∂s

∂

∂t
x(t, s) =

∂

∂s
f(t, x(t, s)), i.e.,

∂

∂s

∂

∂t
x(t, s) = ft(t, x(t))

∂t

∂s
+ fx(t, x(t, s))

∂x(t, s)

∂s
.



11.1. ELEMENTARY METHODS 171

 0

 2

 4

 6

 8

 10

 12

 0  0.5  1  1.5  2

ǫ = −0.5
ǫ = −0.25

ǫ = 0
ǫ = 0.25
ǫ = 0.5

(a) (1 + ǫ)et

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.5  1  1.5  2

ǫ = −0.5
ǫ = −0.25

ǫ = 0
ǫ = 0.25
ǫ = 0.5

(b) (1 + ǫ)e−t

Figure 11.3: Exponential functions with different starting conditions: in (a),
the functions (1+ ǫ)et are shown, while in (b), (1+ ǫ)e−t are shown. The latter
exhibits stability, while the former exhibits instability.



172 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

By the independence of t, s the first part of the RHS is zero, so

∂

∂s

∂

∂t
x(t, s) = fx(t, x(t, s))

∂x(t, s)

∂s
.

We use continuity of x to switch the orders of differentiation:

∂

∂t

∂

∂s
x(t, s) = fx(t, x(t, s))

∂

∂s
x(t, s).

Defining u(t) = ∂
∂sx(t, s), and q(t) = fx(t, x(t, s)), we have

∂

∂t
u(t) = q(t)u(t).

The solution is u(t) = ceQ(t), where

Q(t) =

∫ t

a

q(r) dr.

If q(r) = fx(r, x(r, s)) ≥ δ > 0, then limQ(t) = ∞, and so limu(t) = ∞. But
note that u(t) = ∂

∂sx(t, s), and thus we have instability.
Similarly if q(r) ≤ −δ < 0, then limQ(t) = −∞, and so limu(t) = 0, giving

stability.

11.1.9 Backwards Euler’s Method

Euler’s Method is the most basic numerical technique for solving ODEs. How-
ever, it may suffer from instability, which may make the method inappropriate
or impractical. However, it can be recast into a method which may have superior
stability at the cost of limited applicability.

This method, the so-called Backwards Euler’s Method, is a stepping method:
given a reasonable approximation to x(t), it calculates an approximation to
x(t + h). As usual, Taylor’s Theorem is the starting point. Letting tf = t+ h,
Taylor’s Theorem states that

x(tf − h) = x(tf ) + (−h)x′(tf ) +
(−h)2

2
x′′(tf ) + . . . ,

for an analytic function. Assuming that x has two continuous derivatives on the
interval in question, the second order term is truncated to give

x(t) = x(t+ h− h) = x(tf − h) ≈ x(tf ) + (−h)x′(tf )
and so, x(t+ h) ≈ x(t) + hx′(t+ h)

The complication with applying this method is that x′(t + h) may not be
computable if x(t + h) is not known, thus cannot be used to calculate an ap-
proximation for x(t+h). Since this approximation may contain x(t+h) on both



11.1. ELEMENTARY METHODS 173

sides, we call this method an implicit method. In contrast, Euler’s Method, and
the Runge-Kutta methods in the following section are explicit methods : they
can be used to directly compute an approximate step. We make this clear by
examples.

Example 11.4. Consider the ODE

{

dx(t)
dt = cosx,

x(0) = 2π.

In this case, if we wish to approximate x(0+h) using Backwards Euler’s Method,
we have to find x(h) such that x(h) = x(0) + cosx(h). This is equivalent to
finding a root of the equation

g(y) = 2π + cos y − y = 0

The function g(y) is nonincreasing (g′(y) is nonpositive), and has a zero between
6 and 8, as seen in Figure 11.4. The techniques of Chapter 4 are needed to find
the zero of this function.

-6

-4

-2

 0

 2

 4

 6

 8

 0  2  4  6  8  10  12

g(y)

Figure 11.4: The nonincreasing function g(y) = 2π + cos y − y is shown.

Example 11.5. Consider the ODE from Example 11.1:

{

dx(t)
dt = x,
x(0) = 1.

The actual solution is x(t) = et. Euler’s Method underestimates x(t), as shown
in Figure 11.1. Using Backwards Euler’s Method, gives the approximation:

x(t+ h) = x(t) + hx(t+ h),

x(t+ h) =
x(t)

1− h.



174 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

Using Backwards Euler’s Method gives an overestimate, as shown in Figure 11.5.
This is because each step proceeds on the tangent line to a curve ket to a point
on that curve. Generally Backwards Euler’s Method is preferred over vanilla
Euler’s Method because it gives equivalent stability for larger stepsize h. This
effect is not evident in this case.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.5  1  1.5  2  2.5  3

Backwards Euler approximation
Actual

Figure 11.5: Backwards Euler’s Method applied to approximate x′ = x, x(0) =
1. The approximation is an overestimate, as each step is to a point on a curve
ket, through the tangent at that point. Compare this figure to Figure 11.1,
which shows the same problem approximated by Euler’s Method, with the same
stepsize, h = 0.3.

11.2 Runge-Kutta Methods

Recall the ODE problem: find some x(t) such that

{

dx(t)
dt = f (t, x(t)) ,

x(a) = c,

where f, a, c are given.

Recall that the Taylor’s series method has problems: either you are using the
first order method (Euler’s Method), which suffers inaccuracy, or you are using
a higher order method which requires evaluations of higher order derivatives of
x(t), i.e., x′′(t), x′′′(t), etc. This makes these methods less useful for the general
setting of f being a blackbox function. The Runge-Kutta Methods (don’t ask
me how it’s pronounced) seek to resolve this.



11.2. RUNGE-KUTTA METHODS 175

11.2.1 Taylor’s Series Redux

We fall back on Taylor’s series, in this case the 2-dimensional version:

f(x+ h, y + k) =
∞
∑

i=0

1

i!

(

h
∂

∂x
+ k

∂

∂y

)i

f(x, y).

The thing in the middle is an operator on f(x, y). The partial derivative oper-
ators are interpreted exactly as if they were algebraic terms, that is:

(

h
∂

∂x
+ k

∂

∂y

)0

f(x, y) = f(x, y),

(

h
∂

∂x
+ k

∂

∂y

)1

f(x, y) = h
∂f(x, y)

∂x
+ k

∂f(x, y)

∂y
,

(

h
∂

∂x
+ k

∂

∂y

)2

f(x, y) = h2
∂2f(x, y)

∂x2
+ 2hk

∂2f(x, y)

∂x∂y
+ k2

∂2f(x, y)

∂y2
,

...

There is a truncated version of Taylors series:

f(x+ h, y + k) =

n
∑

i=0

1

i!

(

h
∂

∂x
+ k

∂

∂y

)i

f(x, y) +
1

(n+ 1)!

(

h
∂

∂x
+ k

∂

∂y

)n+1

f(x̄, ȳ).

where (x̄, ȳ) is a point on the line segment with endpoints (x, y) and (x+ h, y + k).
For practice, we will write this for n = 1:

f(x+ h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y) +
1

2

(

h2fxx(x̄, ȳ) + 2hkfxy(x̄, ȳ) + k2fyy(x̄, ȳ)
)

11.2.2 Deriving the Runge-Kutta Methods

We now introduce the Runge-Kutta Method for stepping from x(t) to x(t+ h).
We suppose that α, β, w1, w2 are fixed constants. We then compute:

K1 ← hf(t, x)

K2 ← hf(t+ αh, x+ βK1).

Then we approximate:

x(t+ h)← x(t) + w1K1 + w2K2.

We now examine the “proper” choices of the constants. Note that w1 =
1, w2 = 0 corresponds to Euler’s Method, and does not require computation of
K2. We will pick another choice.



176 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

Also notice that the definition of K2 should be related to Taylor’s theorem
in two dimensions. Let’s look at it:

K2/h = f(t+ αh, x+ βK1)

= f(t+ αh, x+ βhf(t, x))

= f + αhft + βhffx +
1

2

(

α2h2ftt(t̄, x̄) + αβfh2ftx(t̄, x̄) + β2h2f2fxx(t̄, x̄)
)

.

Now reconsider our step:

x(t+ h) = x(t) + w1K1 + w2K2

= x(t) + w1hf + w2hf + w2αh
2ft + w2βh

2ffx +O
(

h3
)

.

= x(t) + (w1 + w2)hx
′(t) + w2h

2 (αft + βffx) +O
(

h3
)

.

= x(t) + (w1 + w2)hx
′(t) + w2h

2 (αft + βffx) +O
(

h3
)

.

If we happen to choose our constants such that

w1 + w2 = 1, αw2 =
1

2
= βw2,

then we get

x(t + h) = x(t) + hx′(t) +
1

2
h2 (ft + ffx) +O

(

h3
)

= x(t) + hx′(t) +
1

2
h2x′′(t) +O

(

h3
)

,

i.e., our choice of the constants makes the approximate x(t + h) good up to a
O
(

h3
)

term, because we end up with the Taylor’s series expansion up to that
term. cool.

The usual choice of constants is α = β = 1, w1 = w2 = 1
2 . This gives the

second order Runge-Kutta Method :

x(t+ h)← x(t) +
h

2
f(t, x) +

h

2
f(t+ h, x+ hf(t, x)).

This can be written (and evaluated) as

K1 ← hf(t, x)

K2 ← hf(t+ h, x+K1)

x(t+ h)← x(t) +
1

2
(K1 +K2) .

(11.4)

Another choice is α = β = 2/3, w1 = 1/4, w2 = 3/4. This gives

x(t+ h)← x(t) +
h

4
f(t, x) +

3h

4
f

(

t+
2h

3
, x+

2h

3
f(t, x)

)

.



11.3. SYSTEMS OF ODES 177

The Runge-Kutta Method of order two has error term O
(

h3
)

. Sometimes
this is not enough and higher-order Runge-Kutta Methods are used. The next
Runge-Kutta Method is the order four method:

K1 ← hf(t, x)

K2 ← hf(t+ h/2, x+K1/2)

K3 ← hf(t+ h/2, x+K2/2)

K4 ← hf(t+ h, x+K3)

x(t+ h)← x(t) +
1

6
(K1 + 2K2 + 2K3 +K4) .

(11.5)

This method has orderO
(

h5
)

. (See http://mathworld.wolfram.com/Runge-KuttaMethod.html)
The Runge-Kutta Method can be extrapolated to even higher orders. How-

ever, the number of function evaluations grows faster than the accuracy of the
method. Thus the methods of order higher than four are normally not used.

We already saw that w1 = 1, w2 = 0 corresponds to Euler’s Method. We
consider now the case w1 = 0, w2 = 1. The method becomes

x(t+ h)← x(t) + hf

(

t+
h

2
, x+

h

2
f(t, x)

)

.

This is called the modified Euler’s Method. Note this gives a different value
than if Euler’s Method was applied twice with step size h/2.

11.2.3 Examples

Example 11.6. Consider the ODE:
{

x′ = (tx)3 −
(

x
t

)2

x(1) = 1

Use h = 0.1 to compute x(1.1) using both Taylor’s Series Methods and
Runge-Kutta methods of order 2.

11.3 Systems of ODEs

Recall the regular ODE problem: find some x(t) such that
{

dx(t)
dt = f (t, x(t)) ,

x(a) = c,

where f, a, c are given.
Sometimes the physical systems we are considering are more complex. For

example, we might be interested in the system of ODEs:














dx(t)
dt = f (t, x(t), y(t)) ,

dy(t)
dt = g (t, x(t), y(t)) ,
x(a) = c,
y(a) = d.



178 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

Example 11.7. Consider the following system of ODEs:















dx(t)
dt = t2 − x

dy(t)
dt = y2 + y − t,
x(0) = 1,
y(0) = 0.

You should immediately notice that this is not a system at all, but rather a
collection of two ODEs:

{

dx(t)
dt = t2 − x

x(0) = 1,

and
{

dy(t)
dt = y2 + y − t,
y(0) = 0.

These two ODEs can be solved separately. We call such a system uncoupled. In
an uncoupled system the function f(t, x, y) is independent of y, and g(t, x, y) is
independent of x. A system which is not uncoupled, is, of course, coupled. We
will not consider uncoupled systems.

11.3.1 Larger Systems

There is no need to stop at two functions. We may imagine we have to solve
the following problem: find x1(t), x2(t), . . . , xn(t) such that































dx1(t)
dt = f1 (t, x1(t), x2(t), . . . , xn(t)) ,

dx2(t)
dt = f2 (t, x1(t), x2(t), . . . , xn(t)) ,

...
dxn(t)

dt = fn (t, x1(t), x2(t), . . . , xn(t)) ,
x1(a) = c1, x2(a) = c2, . . . , xn(a) = cn.

The idea is to not be afraid of the notation, write everything as vectors, then
do exactly the same thing as for the one dimensional case! That’s right, there
is nothing new but notation:

Let

X =









x1
x2
. . .
xn









, X′ =









x′1
x′2
. . .
x′n









, F =









f1
f2
. . .
fn









, C =









c1
c2
. . .
cn









.

Then we want to find X such that
{

X′(t) = F (t,X(t))
X (a) = C.

(11.6)

Compare this to equation 11.1.



11.3. SYSTEMS OF ODES 179

11.3.2 Recasting Single ODE Methods

We will consider stepping methods for solving higher order ODEs. That is,
we know X(t), and want to find X(t + h). Most of the methods we looked at
for solving one dimensional ODEs can be rewritten to solve higher dimensional
problems.

For example, Euler’s Method, equation 11.3 can be written as

X(t+ h)←X(t) + hF (t,X(t)) .

As in 1D, this method is derived from approximating X by its linearization.
In fact, our general strategy of using Taylor’s Theorem also carries through

without change. That is we can use the kth order method to step as follows:

X(t+ h)←X(t) + hX′(t) +
h2

2
X′′(t) + . . .+

hk

k!
X(k)(t).

Additionally we can write the Runge-Kutta Methods as follows:

Order two:

K1 ← hF (t,X)

K2 ← hF (t+ h,X +K1)

X(t+ h)←X(t) +
1

2
(K1 +K2) .

Order four:

K1 ← hF (t,X)

K2 ← hF

(

t+
1

2
h,X +

1

2
K1

)

K3 ← hF

(

t+
1

2
h,X +

1

2
K2

)

K4 ← hF (t+ h,X +K3)

X(t+ h)← x(t) +
1

6
(K1 + 2K2 + 2K3 +K4) .

Example Problem 11.8. Consider the system of ODEs:






























x′1(t) = x2 − x23
x′2(t) = t+ x1 + x3
x′3(t) = x2 − x21
x1(0) = 1,
x2(0) = 0,
x3(0) = 1.

Approximate X(0.1) by taking a single step of size 0.1, for Euler’s Method, and
the Runge-Kutta Method of order 2. Solution: We write

F (t,X(t)) =





x2(t)− x23(t)
t+ x1(t) + x3(t)
x2(t)− x21(t)



 X(0) =





1
0
1







180 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

Thus we have

F (0,X(0)) =





−1
2
−1





Euler’s Method then makes the approximation

X(0.1)←X(0) + 0.1F (0,X(0)) =





1
0
1



+





−0.1
0.2
−0.1



 =





0.9
0.2
0.9





The Runge-Kutta Method computes:

K1 ← 0.1F (0,X(0)) =





−0.1
0.2
−0.1



 and K2 ← 0.1F (0.1,X(0)+K1) =





−0.061
0.19
−0.061





Then

X(0.1)←X(0) +
1

2
(K1 +K2) =





1
0
1



+





−0.0805
0.195
−0.0805



 =





0.9195
0.195
0.9195





⊣

11.3.3 It’s Only Systems

The fact we can simply solve systems of ODEs using old methods is good news.
It allows us to solve higher order ODEs. For example, consider the following
problem: given f, a, c0, c1, . . . , cn, find x(t) such that

{

x(n)(t) = f
(

t, x(t), x′(t), . . . , x(n−1)(t)
)

,

x(a) = c0, x
′(a) = c1, x

′′(a) = c2, . . . , x
(n−1)(a) = cn−1.

We can put this in terms of a system by letting

x0 = x, x1 = x′, x2 = x′′, . . . , xn−1 = x(n−1).

Then the ODE plus these n− 1 equations can be written as


































x′n−1(t) = f (t, x0(t), x1(t), x2(t), . . . , xn−1(t))
x′0(t) = x1(t)
x′1(t) = x2(t)
...
x′n−2(t) = xn−1(t)
x0(a) = c0, x1(a) = c1, x2(a) = c2, . . . , xn−1(a) = cn−1.

This is just a system of ODEs that we can solve like any other.
Note that this trick also works on systems of higher order ODEs. That is,

we can transform any system of higher order ODEs into a (larger) system of
first order ODEs.



11.3. SYSTEMS OF ODES 181

Example Problem 11.9. Rewrite the following system as a system of first
order ODEs:







x′′(t) = (t/y(t)) + x′(t)− 1
y′(t) = 1

(x′(t)+y(t))

x(0) = 1, x′(0) = 0, y(0) = −1

Solution: We let x0 = x, x1 = x′, x2 = y, then we can rewrite as















x′1(t) = (t/x2(t)) + x1(t)− 1
x′0(t) = x1(t)
x′2(t) =

1
(x1(t)+x2(t))

x0(0) = 1, x1(0) = 0, x2(0) = −1

⊣

11.3.4 It’s Only Autonomous Systems

In fact, we can use a similar trick to get rid of the time-dependence of an ODE.
Consider the first order system



































x′1 = f1 (t, x1, x2, . . . , xn) ,
x′2 = f2 (t, x1, x2, . . . , xn) ,
x′3 = f3 (t, x1, x2, . . . , xn) ,

...
x′n = fn (t, x1, x2, . . . , xn) ,
x1(a) = c1, x2(a) = c2, . . . , xn(a) = cn.

We can get rid of the time dependence and thus make the system autonomous
by making t another variable function to be found. We do this by letting x0 = t,
then adding the equations x′0 = 1, and x0(a) = a, to get the system:











































x′0 = 1,
x′1 = f1 (x0, x1, x2, . . . , xn) ,
x′2 = f2 (x0, x1, x2, . . . , xn) ,
x′3 = f3 (x0, x1, x2, . . . , xn) ,

...
x′n = fn (x0, x1, x2, . . . , xn) ,
x0(a) = a, x1(a) = c1, x2(a) = c2, . . . , xn(a) = cn.

An autonomous system can be written in the more elegant form:

{

X′ = F (X)
X (a) = C.

Moreover, we can consider the phase curve of an autonomous system.
One can consider X to be the position of a particle which moves through R

n

over time. For an autonomous system of ODEs, the movement of the particle



182 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

is dependent only on its current position and not on time.1 A phase curve is
a flow line in the vector field F . You can think of the vector field F as being
the velocity, at a given point, of a river, the flow of which is time independent.
Under this analogy, the phase curve is the path of a vessel placed in the river.
In our deterministic world, phase curves never cross. This is because at the
point of crossing, there would have to be two different values of the tangent of
the curve, i.e., the vector field would have to have two different values at that
point.

The following example illustrates the idea of phase curves for autonomous
ODE.

Example 11.10. Consider the autonomous system of ODEs, without an initial
value:

{

x′1(t) = −2(x2 − 2.4)
x′2(t) = 3(x1 − 1.2)

We can rewrite this ODE as

X ′(t) = F (X(t)) .

This is an autonomous ODE. The associated vector field can be expressed as

F (X) =

[

0 −2
3 0

]

X +

[

4.8
−3.6

]

.

This vector field is plotted in Figure 11.6.
You should verify that this ODE is solved by

X (t) = r

[ √
2 cos(

√
6t+ t0)√

3 sin(
√
6t+ t0)

]

+

[

1.2
2.4

]

,

for any r ≥ 0, and t0 ∈ (0, 2π] . Given an initial value, the parameters r and
t0 are uniquely determined. Thus the trajectory of X over time is that of an
ellipse in the plane.2 Thus the family of such ellipses, taking all r ≥ 0, form
the phase curves of this ODE. We would expect the approximation of an ODE
to never cross a phase curve. This is because the phase curve represents the

Euler’s Method and the second order Runge-Kutta Method were used to ap-
proximate the ODE with initial value

X (0) =

[

1.5
1.5

]

.

Euler’s Method was used for step size h = 0.005 for 3000 steps. The Runge-
Kutta Method was employed with step size h = 0.015 for 3000 steps. The ap-
proximations are shown in Figure 11.7.

1Note that if you have converted a system of n equations with a time dependence to
an autonomous system, then the autonomous system should be considered a particle moving
through Rn+1. In this case time becomes one of the dimensions, and thus we speak of position,
instead of time.

2In the case r = 0, the ellipse is the “trivial” ellipse which consists of a point.



11.3. SYSTEMS OF ODES 183

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3  3.5

Figure 11.6: The vector field F (X) is shown in R
2. The tips of the vectors are

shown as circles. (Due to budget restrictions, arrowheads were not available for
this figure.)

Given that the actual solution of this initial value problem is an ellipse,
we see that Euler’s Method performed rather poorly, spiralling out from the
ellipse. This must be the case for any step size, since Euler’s Method steps in
the direction tangent to the actual solution; thus every step of Euler’s Method
puts the approximation on an ellipse of larger radius. Smaller stepsize minimizes
this effect, but at greater computational cost.

The Runge-Kutta Method performs much better, and for larger step size. At
the given resolution, no spiralling is observable. Thus the Runge-Kutta Method
outperforms Euler’s Method, and at lesser computational cost.3

3Because the Runge-Kutta Method of order two requires two evaluations of F , whereas
Euler’s Method requires only one, per step, it is expected that they would be ‘evenly matched’
when Runge-Kutta Method uses a step size twice that of Euler’s Method.



184 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3  3.5

(a) Euler’s Method

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.5  0  0.5  1  1.5  2  2.5  3  3.5

(b) Runge-Kutta Method

Figure 11.7: The simulated phase curves of the system of Example 11.10 are
shown for (a) Euler’s Method and (b) the Runge-Kutta Method of order 2. The
Runge-Kutta Method used larger step size, but was more accurate. The actual
solution to the ODE is an ellipse, thus the “spiralling” observed for Euler’s
Method is spurious.



11.3. SYSTEMS OF ODES 185

Exercises

(11.1) Given the ODE:
{

x′(t) = t2 − x2
x(1) = 1

Approximate x(1.1) by using one step of Euler’s Method. Approximate
x(1.1) using one step of the second order Runge-Kutta Method.

(11.2) Given the ODE:














x′1(t) = x1x2 + t
x′2(t) = 2x2 − x21
x1(1) = 0
x2(1) = 3

Approximate X(1.1) by using one step of Euler’s Method. Approximate
X(1.1) using one step of the second order Runge-Kutta Method.

(11.3) Consider the separable ODE

x′(t) = x(t)g(t),

for some function g. Use backward’s Euler (or, alternatively, the right
endpoint rule for approximating integrals) to derive the approximation
scheme

x(t+ h)← x(t)

1− hg(t+ h)
.

What could go wrong with using such a scheme?
(11.4) Consider the ODE

x′(t) = x(t) + t2.

Using Taylor’s Theorem, derive a higher order approximation scheme to
find x(t+ h) based on x(t), t, and h.

(11.5) Which of the following ODEs can you show are stable? Which are un-
stable? Which seem ambiguous?
(a) x′(t) = −x − arctanx (b) x′(t) = 2x + tanx (c) x′(t) = −4x − ex
(d) x′(t) = x+ x3 (e) x′(t) = t+ cosx

(11.6) Rewrite the following higher order ODE as a system of first order ODEs:







x′′(t) = x(t) − sinx′(t),
x(0) = 0,
x′(0) = π.

(11.7) Rewrite the system of ODEs as a system of first order ODEs























x′′(t) = y(t) + t− x(t),
y′(t) = x′(t) + x(t)− 4,
x′(0) = 1,
x(0) = 2,
y(0) = 0.



186 CHAPTER 11. ORDINARY DIFFERENTIAL EQUATIONS

(11.8) Rewrite the following higher order system of ODEs as a system of first
order ODEs:















x′′′(t) = y′′(t)− x′(t),
y′′′(t) = x′′(t) + y′(t),
x(0) = x′′(0) = y′(0) = −1,
x′(0) = y(0) = y′′(0) = 1.

(11.9) Implement Euler’s Method for approximating the solution to

{

dx(t)
dt = f (t, x(t)) ,

x(a) = c.

Your m-file should have header line like:
function xfin = euler(f,a,c,h,steps)

where xfin should be the approximate solution to the ODE at time
a+ steps ⋆ h.
(a) Run your code with f(t, x) = −x, using a = 0 6= c, and using

h ⋆ steps = 1.0. In this case the actual solution is

xfin = ce−1.

This ODE is stable, so your approximation should be good (cf.
Example 11.3). Experiment with different values of h.

(b) Run your code with f(t, x) = x, using a = 0 6= c, and using h ⋆
steps = 1.0. In this case the actual solution is

xfin = ce.

Your actual solution may be a rather poor approximation. Prepare
a plot of error versus h for varying values of h. (cf. Figure 9.1 and
Figure ??)

(c) Run your code with f(t, x) = 1/ (1− x) , using a = 0, c = 0.1, and
using h ⋆ steps = 2.0. Plot your approximations for varying values
of steps. For example, try steps values of 35, 36, and 90, 91. Also
try large values of steps, like 100, 500, 1000. Can you guess what
the actual solution is supposed to look like? Can you explain the
poor performance of Euler’s Method for this ODE?

(11.10) Implement the Runge-Kutta Method of order two for approximating
the solution to

{

dx(t)
dt = f (t, x(t)) ,

x(a) = c.

Your m-file should have header line like:
function xfin = rkm(f,a,c,h,steps)

where xfin should be the approximate solution to the ODE at time
a+ steps ⋆ h.
Test your code with the ODEs from the previous problem. Does the
Runge-Kutta Method perform any better than Euler’s Method for the
last ODE?



Appendix A

GNU Free Documentation
License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

187



188 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated
herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the
license if you copy, modify or distribute the work in a way requiring permission
under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or



189

XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific sec-
tion name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a sec-
tion when you modify the Document means that it remains a section “Entitled
XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.



190 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.



191

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,



192 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT
WORKS



193

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the
individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or



194 APPENDIX A. GNU FREE DOCUMENTATION LICENSE

any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices just
after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being
LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.


	Preface
	Introduction
	Examples
	Iteration
	Topics

	Some mathematical preliminaries
	Series
	Geometric series
	The integral test
	Alternating Series
	Taylor's Theorem

	Exercises

	Computer arithmetic
	Strange arithmetic
	Error
	Computer numbers
	Types of numbers
	Floating point numbers
	Distribution of computer numbers
	Exploring numbers with Python

	Loss of Significance
	Exercises

	Finding Roots
	Bisection
	Modifications
	Convergence
	Implementation

	Functional iteration
	Newton's Method
	Connection with functional iteration
	Implementation
	Problems
	Convergence
	Using Newton's Method

	Secant Method
	Problems
	Convergence

	Exercises

	Interpolation
	Polynomial Interpolation
	Lagranges Method
	Newton's Method
	Newton's Nested Form
	Divided Differences

	Errors in Polynomial Interpolation
	Interpolation Error Theorem
	Interpolation Error for Equally Spaced Nodes

	Exercises

	Spline Interpolation
	First and Second Degree Splines
	First Degree Spline Accuracy
	Second Degree Splines
	Computing Second Degree Splines

	(Natural) Cubic Splines
	Why Natural Cubic Splines?
	Computing Cubic Splines

	B Splines
	Exercises

	Solving Linear Systems
	Gaussian Elimination with Naïve Pivoting
	Elementary Row Operations
	Algorithm Terminology
	Algorithm Problems

	Pivoting Strategies for Gaussian Elimination
	Scaled Partial Pivoting
	An Example
	Another Example and A Real Algorithm

	LU Factorization
	An Example
	Using LU Factorizations
	Some Theory
	Computing Inverses

	Iterative Solutions
	An Operation Count for Gaussian Elimination
	Dividing by Multiplying
	Impossible Iteration
	Richardson Iteration
	Jacobi Iteration
	Gauss Seidel Iteration
	Error Analysis
	A Free Lunch?

	Exercises

	Least Squares
	Least Squares
	The Definition of Ordinary Least Squares
	Linear Least Squares
	Least Squares from Basis Functions

	Orthonormal Bases
	Alternatives to Normal Equations

	Orthogonal Least Squares
	Computing the Orthogonal Least Squares Approximant
	Principal Component Analysis

	Exercises

	Approximating Derivatives
	Finite Differences
	Approximating the Second Derivative

	Richardson Extrapolation
	Abstracting Richardson's Method
	Using Richardson Extrapolation

	Exercises

	Integrals and Quadrature
	The Definite Integral
	Upper and Lower Sums
	Approximating the Integral
	Simple and Composite Rules

	Trapezoidal Rule
	How Good is the Composite Trapezoidal Rule?
	Using the Error Bound

	Romberg Algorithm
	Recursive Trapezoidal Rule

	Gaussian Quadrature
	Determining Weights (Lagrange Polynomial Method)
	Determining Weights (Method of Undetermined Coefficients)
	Gaussian Nodes
	Determining Gaussian Nodes
	Reinventing the Wheel

	Exercises

	Ordinary Differential Equations
	Elementary Methods
	Integration and `Stepping'
	Taylor's Series Methods
	Euler's Method
	Higher Order Methods
	A basic error estimate
	Error theorems
	Examples
	Stability
	Backwards Euler's Method

	Runge-Kutta Methods
	Taylor's Series Redux
	Deriving the Runge-Kutta Methods
	Examples

	Systems of ODEs
	Larger Systems
	Recasting Single ODE Methods
	It's Only Systems
	It's Only Autonomous Systems

	Exercises

	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	ADDENDUM: How to use this License for your documents


