Calc I - Review for exam I

The first exam will be this Friday, February 5. Here are some problems that might help.

Table 1: Values of $(7^h - 1)/h$ vs h				
h	0.1	0.01	0.001	0.0001
$(7^h - 1)/h$	2.1481	1.9650	1.9478	1.9461

1. Table 1 shows some values of $(7^{h} - 1)/h$ versus h. Use the table to estimate

$$\lim_{h \to 0} \frac{7^h - 1}{h}.$$

- 2. Write down the difference quotient for $f(x) = 7^x$. Use the previous problem to estimate f'(x).
- 3. Let $f(x) = x^2 + 2x 1$.
 - (a) Sketch the graph of f, together with the line tangent to the graph at the point (0, f(0)).
 - (b) Compute the slope of the secant line through the points (0, f(0)) and (2, f(2)). Draw this line on your graph from part (a).
 - (c) Write down the difference quotient for f at 0, i.e. the slope of the secant line through the points (0, f(0)) and (0 + h, f(0 + h)).
 - (d) Compute the limit as $h \to 0$ of your answer to part (c).
 - (e) How does your answer to part (d) relate to your sketch from part (a)?
- 4. Let

$$f(x) = \frac{(5x-1)(x-3)}{x^2 - 9}$$

Evaluate each of the following the limits.

- (a) $\lim_{x \to -1} f(x)$
- (b) $\lim_{x\to -3^{-}} f(x)$, $\lim_{x\to -3^{+}} f(x)$, and $\lim_{x\to -3} f(x)$
- (c) $\lim_{x\to 3} f(x)$
- 5. Figure 1 shows the complete graph of a function f; its domain is (-1, 2].
 - (a) What are f(1.5) and $\lim_{x\to 1.5} f(x)$?
 - (b) What are $\lim_{x\to 1^-} f(x)$, $\lim_{x\to 1^+} f(x)$, and $\lim_{x\to 1} f(x)$?
 - (c) What can you say about $\lim_{x\to -1^+} f(x)$.

- 6. Find the derivatives of the following functions, using the definition of the derivative.
 - (a) $f(x) = 2x^2 4x$
 - (b) $f(x) = 1/\sqrt{x}$
 - (c) $f(x) = x^5$
 - (d) $f(x) = 1/x^3$
- 7. Find the derivatives of the following functions, using any technique you see fit.
 - (a) $f(x) = 2x^2 4x$
 - (b) $f(x) = 1/\sqrt{x}$
 - (c) $f(x) = x^5$
 - (d) $f(x) = x^5 (x^2 x 1)$
 - (e) $f(x) = (x^2 x 1)/x$
 - (f) $f(x) = e^x (x^2 x 1)$
- 8. Let $f(x) = x^2 x$.
 - (a) Write down the estimate for the slope of the graph of f at x = 2 yielded by the difference quotient using h = 0.1.
 - (b) Write down an equation for the corresponding secant line.
 - (c) Write down and equation for the precise tangent line at x = 2.
- 9. If f and g are differentiable function, prove that

$$\frac{d}{dx}(2f(x) + 3g(x)) = 2f'(x) + 3g'(x)$$

10. The complete graph of a function f is shown in figure 2; it consists of a line segment, a quartercircle, and a semi-circle. Sketch the graph of f'.

Figure 1: The graph for problem 5

Figure 2: The complete graph for problem 10