Problems - HW 5

Thursday, September 26

1. For which values of c does the following system have no solution?

$$
\begin{aligned}
x-y+z & =3 \\
x+y+z & =1 \\
x-y+\left(c^{2}-8\right) z & =c
\end{aligned}
$$

2. As is well known, three non-collinear points in the plane determine a unique circle. There's a very groovy way to find the equation of that circle using a determinant. Let the points be $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$. An equation for the circle is then

$$
\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2}+y_{2}^{2} & x_{2} & y_{2} & 1 \\
x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3} & 1
\end{array}\right|=0 .
$$

(a) Apply this technique to find an equation of the circle containing the points $(1,1)$, $(2,3)$, and $(3,4)$.
(b) What happens when the three points are collinear? Illustrate with an example.
(c) Generalize this technique to find the equation of a sphere containing four points in space. Apply your technique to find an equation of the sphere containing the points $(1,1,1),(2,3,4),(3,4,5)$, and $(6,-6,6)$.

