Problems - HW 4

Thursday, September 19

1. Describe the geometric action of the following matrices using terms such as reflection, rotation, dilation, and skew.
(a) $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right)$
(c) $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$
2. Let M denote the matrix

$$
M=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right)
$$

(a) M represents a reflection about what line?

Your answer should be in terms of θ.
(b) Use this formulation to find a reflection about the line $y=\sqrt{3} x$.

3 . Let A be the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) .
$$

Use the figure on the reverse to explain why the area of the parallelogram spanned by the column vectors of A is $a d-b c$.
Acknowledgement: The figure comes from math.stackexchange. Evidently, it originally appeared in the 1985 Math Mag.

Proof without words:

A 2×2 determinant is the area of a parallelogram

